

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

Why do we need UPRT SARPs?

 Mitigating loss of control in-flight accidents is an *ICAO Safety Priority*

 Upset prevention and recovery training (UPRT) for pilots is one means to address this priority.

Why do we need UPRT SARPs?

- Only aeroplane pilots were considered:
- Less fatalities in other categories (helicopter, airship, powered-lift, glider, free balloon)
- No expertise available in these categories
- Urgency of mitigation
- Other means being developed for helicopter

Top 3 Safety Priorities

^{*} Accidents involving scheduled commercial air transport with maximum take-off weight exceeding 5 700 kg

6

LOC-I Accidents: 2010 – 2014 (IATA Data)

Region of Operator

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

How did we proceed?

- We identified training concerns:
 - Insufficient knowledge base of existing pilots and applicants
 - Wrong techniques being trained
 - Passing a check is not a measure of how well pilots understand the limitations/performance of their aeroplanes.
 - Current training aims at passing a check, resulting in training being mostly conducted a low level and low TAS

How did we proceed?

- Process used:
 - Build on existing industry initiatives
 - RAeS's ICATEE
 - LOCART initiative
 - Existing Airplane Upset Recovery Training Aid (AURTA)
 - Development of a suite of UPRT ICAO material
 - Annex and PANS-TRG amendments
 - Guidance material

UPRT: One Aspect of a Global Approach

- Collaborative approach:
- Information sharing
- Lifecycle model for pilot training
- Implement UPRT
- Outreach

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

What the SARPs say:

- Pilots must be trained in upset prevention and recovery in order to meet:
 - Licensing SARPs for CPL and MPL
 - MPL must include on-aircraft UPRT and be conducted by an ATO
 - CPL should include on-aircraft UPRT and be conducted by an ATO
 - Licensing requirements for multi-crew type-rating
 - Commercial air transport pilot training programme requirements
- Applicable: 13 Nov 2014
- Where?

ICAO UPRT Provisions

Annex 1

UPRT requirements for MPL and the type rating of multicrew aeroplanes + **RP** for CPL

Annex 6

UPRT requirements for flight crew training

PANS-TRAINING

New Chapter to support Annex requirements

ICAO UPRT Provisions

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

- 1. Professional pilots to be trained in upset *prevention* and recovery:
 - Licensing

MPI On-Aeroplane: CPL should be trained

• *In FSTD:* Multi-crew type rating

Approved UPRT in an Approved Training Organization

- Commercial air transport training programmes in FSTD
 - Initial (conversion)
 - Recurrent

- 2. Pilots must be trained *throughout* the normal flight envelope (green), including the outer edges.
 - Approach to stall
 - High Altitude

2. Pilots must be trained *throughout* the normal flight envelope (green), including the outer edges.

Why not outside the envelope?

- Potential for negative transfer of training:
 - Out-of-envelope aircraft responses can be random
 - FSTD responses do not replicate aircraft responses faithfully
- Globally, training benefits do not outweigh safety risks

3. UPRT is about *training to proficiency, not checking*

4. Cost-benefit assessment – Personnel costs

- Of on-aircraft and FSTD UPRT
- Resources and context
 - Airline bridge training required for existing pilots

4. Cost-benefit assessment – Personnel costs

Licence/ Rating/ Training	# of individuals (Doc 9956)	Training type	Knowledge USD costs per individual	Aircraft/ FSTD USD costs per individual	Pilot salary (100,000 USD/ year)	Instructor costs (USD)	Total (m USD)	Remarks	
CPL	50,000 yearly	On- aircraft	200	1000 (4 hrs)		150	67.5	Recommended practice — yearly licensing costs	
MPL	300 yearly	On- aircraft					0.08	no additional costs (except type-rating)	
Type-rating	100,000 yearly	FSTD	200	500	65	150	59.0	1 hour per type rating	
Recurrent training	450,000 yearly	FSTD		250	32	60	84.2	30 minutes per year	
Operator training	450,000	FSTD	200	2000	260	1000	882.0	4 hours once — Non recurrent — Bridge-trg	
Instructor	50,000	UPRT qualif.	400	2500	500	1000	119.2	Instructor qualification — non recurrent	
						TOTAL	210.8 1,001.2	Recurrent Non recurrent	

4. Cost-benefit assessment – FSTD Costs

From NPRM FAA-2014-0391 (simplified/global) – includes
 UPRT and icing upgrade

Estimated FSTD Type VII Upgrade Costs (USD)										
FSTD	Development	Implementation	Loss of	Affected	Total					
	Costs	Costs	productivity	# of FSTD	(kUSD)					
Old	24 000	72 000	23 000	381	45 340					
Newer	6 500	40 000	23 000	442	30 720					

5. Safety considerations for on-aeroplane training

- Effective SMS
- Qualified instructors
- Aeroplane capabilities appropriate to the training tasks
- Operational control procedures

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

Implications

- Additional theoretical training for all pilots
- Many FSTDs will need an update to qualify for the full range of UPRT tasks
- Need to balance cost/benefits for delivery of on-aircraft UPRT:
 - SMS considerations
 - Aerobatic aircraft are recommended but not the only option
- Instructors will need further training described in PANS-Training to meet Annex 1 authorization requirements
- Bridge-training for current airline pilots

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

What guidance is out there?

- Manual on Aeroplane Upset and Recovery Training (Doc 10011)
- Aeroplane Upset Recovery Training Aid
- Manual of Criteria for the Qualification of FSTDs (Doc 9625)
- LOC-I Website

Manual on Aeroplane Upset and Recovery Training (Doc 10011)

- Introduction:
 - Upset defined, history & applicability
- Training programme requirements
- Training:
 - Academic training
 - On-aeroplane training
 - FSTD training (non-type-specific and type-specific FSTD)
 - OEMs:
 - Recommendations and training scenarios
 - Upset recovery techniques

Manual on Aeroplane Upset and Recovery Training (Doc 10011)

- FSTD fidelity requirements for UPRT (see later)
- UPRT Instructors:
 - academic, on-aeroplane, FSTD
- Regulatory oversight
- Appendix:
 - Competency-based UPRT programmes

Manual on Aeroplane Upset and Recovery Training (Doc 10011) – Academic and Practical Topics

- Aerodynamics
- Causes and contributing factors of upsets
- Safety review of accidents & incidents relating to aeroplane upsets
- G-awareness
- Energy management
- Flight path management
- Recognition
- Upset prevention and recovery techniques

Manual on Aeroplane Upset and Recovery Training (Doc 10011) – Academic and Practical Topics

- System malfunction
- Specialized training elements
- Human Factors:
 - situation awareness
 - startle and stress response
 - threat and error management (TEM)

B 737

737-400 Optimum and Maximum Altitude

B 737 737-800 Optimum and Maximum Altitudes

B 737

Examples of training —Practical FSTD Exercise

- Objective: to experience and understand thrust availability
- Exercise: acceleration performance from second regime at low altitude and high altitude, e.g. 210-260 KIAS @ 5000/20000/35000ft
- Conditions: manual flying; max cruise thrust; ISA+10C
- Outcomes:
 - Times: 20s/50s/>6 minutes or not possible → demonstrate trading altitude for speed
 - Demonstrate difference between max cruise/max continuous/max rated thrust
 - Note pitch coupling effect differences with altitude at thrust increase
 - Note reduced damping at high altitude + greater effects of pitch attitude change

Examples of training –FSTD Manoeuvre Exercise

- Any UPRT programme being considered by an ATO/airline should be submitted to the OEM for a "No-Technical Objection" statement
- Two videos:
 - Provided by Alaska Airlines on B737-NG UPRT
 - Example of a UPRT exercise that airlines may wish to develop
 - Not an approved training exercise
 - Illustrates instructor interaction and inputs, as well as trainee understanding

Examples of training –FSTD Manoeuvre Exercise

Video 1

Examples of training –FSTD Manoeuvre Exercise

Video 2

6 July 2015

Identifying Training Priorities

- 1. Academic training essentials
- 2. Practical training during CPL/MPL courses
- 3. Integrating UPRT into existing training programs:
 - Instructor training for UPRT
 - Practical training for current pilots
 - Practical training for type-rating/command upgrade
 - Practical recurrent training

ICAO recommends that UPRT be trained to proficiency by the training organization and that <u>no</u> checking should be conducted by the CAA

Training Instructors

- Instructors are key!
- Advanced instructor training for UPRT is required
- Selection of an initial core-group of instructors is advisable
- On-aeroplane UPRT for the core-group is advisable
 - First hand experience of the critical human factors during upset conditions

Training Instructors

- Challenges for the instructors
 - Understanding the FTSD valid training envelope (VTE) and the limitations of simulator motion cueing
 - Instructor Operating Station (IOS) displays
 - On-aeroplane risk and safety management
 - Delivery of human factor aspects in FSTDs, where psycho-physiological effects may be absent
 - Avoidance of negative transfer of training
 - Avoidance of negative training
 - Assessing crew performance

Airplane Upset Recovery Training Aid

- Revision 2 to be updated
 - By OEMs and with ICAO support
 - Covering turboprop and smaller aeroplanes
 - User-friendly format
 - Published as ICAO doc
 - Target: end of 2015
 - Free and easily accessible

- 4th edition (June 2015 version)
- New attachment has guidance for UPRT: Models and qualification tests or requirements for -
 - Aeroplane type-specific recognition cues of the first indication of the stall (stall warning, aerodynamic buffet...)
 - Aeroplane type-specific recognition cues of an impending aerodynamic stall
 - Exemplar recognition cues and handling qualities from the stall break through recovery if prescribed by regulations
 - Engine and airframe icing evaluation

- UPRT instructor tools:
 - IOS displays
 - Recording manoeuvres for debrief

Example of alpha/beta envelope plot

- UPRT instructor tools:
 - IOS displays
 - Recording manoeuvres for debrief

Example of V-n plot

- UPRT instructor tools:
 - IOS

Example of instructor feedback display

LOC-I Website – under development

Overview

- Why do we need UPRT SARPs?
- How did we proceed?
- What do the ICAO provisions say?
- What are the big changes?
- What are the implications?
- What guidance is out there?
- Example of implementation

Case Study: US FAA implementation

New stall and UPRT requirements in the United States

- Congressional Direction
- Aviation Rulemaking Committee (International Harmonization)
- Public Comment
- Final Rule Publication
- Education (Public/Inspectors)

Congressional Direction

Airline Safety and FAA Extension Act of 2010 (P.L. 111-216) - 2010

- Added numerous measures (Sections) designed to improve aviation safety
- Required the FAA to establish:
 - Various multidisciplinary panels, ARCs, and/or task forces

Aviation Rulemaking Committee

- Requires a multidisciplinary panel (ARC) to study and report on methods to improve pilot familiarity with and response to stick pusher, icing, microburst and windshear events. (208)
- Report from FAA to Congress
 Completed 2011
- ARC expanded global effort with ICAO and EASA to address LOC & upset prevention and recovery training (LOCART)

Final Rule Publication

 Requires part 121 air carriers to provide stall and upset prevention and recovery training.

- Supplemental NPRM May, 2011

Completed

Public Comment 120 days

Completed

- Final rule published Nov, 2013

Completed

Effective Jan, 2019

5 Year Implementation

- Allows time for appropriate FSTD Changes
 - Part 60 NPRM

- Inspector Education
 - Necessity for standardization and consistency

- Public Education
 - Necessity for setting expectations

Rulemaking – Part 60 - FSTD

- Initiated to address simulator fidelity
 - Will consider:
 - Full stall simulator evaluation criteria ← not an ICAO requirement
 - Upset prevention and recovery training
 - Enhanced Airborne Icing Modeling
 - NPRM conducted till January 6 2015
 - Part 60 standards will be in place to allow time for operators to modify and evaluate FSTDs before the regulations' compliance date

Inspector Education:

- Important and needed:
 - Briefings before the release of the final rule
 - On-line training sessions with field inspectors
 - Release of inspector guidance/job aids
 - Annual Principal Operations Inspector conference
 - POI FSTD Training (Stall and Upset Training)

Public Education for aviation industry

- Press Release
 - Inform the general public
- Public Awareness:
 - Publication of the rule in the federal register
 - Release of guidance documents (job aids, advisory circulars)
- Public Interest/Industry Groups
 - Multiple industry presentations to distribute information and discuss implementation expectations

2019 FAA Requirements

Stall Prevention

- At first maneuvers based
 - Takeoff
 - Clean
 - Landing
- •Incorporate Scenarios
- Checking/Testing

Stall Recovery

- Only maneuvers based
- •Instructor led
- Hands on pilot experience through recovery

Upset Prevention

- Manually controlled slow flight;
- Manually controlled loss of reliable airspeed;
- Manually controlled instrument departure and arrival

Upset Recovery

- Nose High
- Nose Low

Take-home messages

- Effective implementation of UPRT requires considerable planning and effort by:
 - ATO's
 - airline operators
 - CAAs
- Ineffective implementation of UPRT may result in negative safety outcomes
- UPRT = training not checking
- Instructor competence is key to success

WE NEED TO GET THIS RIGHT!

North American Western and European and Eastern and Central American Central African North Atlantic Southern African South American ICA0 Middle East **Asia and Pacific** Asia and Pacific and Caribbean Headquarters (WACAF) Office (EUR/NAT) Office (ESAF) Office (NACC) Office (SAM) Office (MID) Office (APAC) Sub-office (APAC) Office Montréal Dakar Paris Cairo Nairobi Beijing Bangkok Mexico City Lima THANK YOU