UPRT in the Simulator

ICAO LOC-I Symposium 22-24 June 2015, Nairobi Sunjoo Advani - President, IDT

Simulator Training

- Simulator Capabilities
 - Controlled environment for UPRT "to proficiency" and generic skills development
 - Ability to create realistic type-specific scenarios
- Simulator Limitations
 - Validated Flight Envelope
 - Limited g-cues
 - Instructor ability to monitor control inputs

Accelerated Stall Demonstration

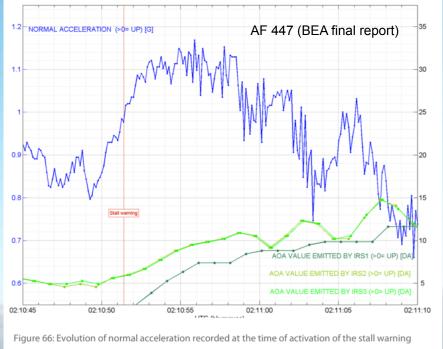
Aerodynamics and handling at FL150 and FL350

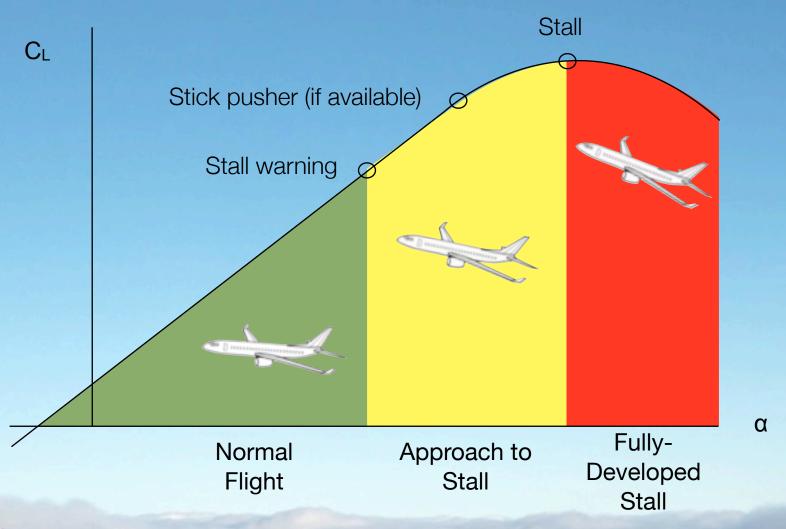
Sim Fidelity Enhancements

- **Better** use of today's devices
- Enhanced feedback in today's sim's
- Improved simulation fidelity in extended envelope
 - aero model
 - pilot cueing (buffet, motion)

Sim Instructor Feedback Requirements

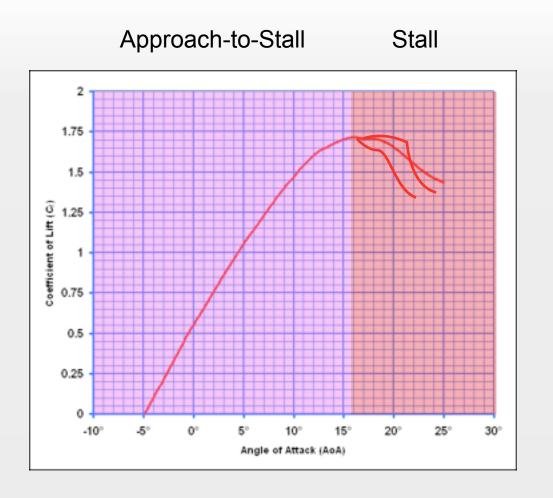
- Did you stay <u>reasonably</u> within the validated flight envelope?
- Did you overstress the airframe?
- Did you apply incorrect/inappropriate control inputs?
- Did you recover correctly?


UPRT IOS Tool


Buffet

- Critical for crews to understand buffet (causes, effects):
 - high-speed VMO/MMO buffet
 - stall onset/deterrent buffet
- Appreciate that buffet may not always be consistent
- Buffet <-> warnings
- Sim buffet tolerances

Stall Training



Model Enhancements

- A/C can have major non-linearities near and beyond stall break
- These can create distractions to the crew, as in real life
 - reduced stability
 - reduced control effectiveness
 - buffet
 - un-commanded roll-off
 - randomness
- US Law requires training to full stall

Non-linearities in Stall Region

Is there value to stall training in FSTD's?

Arguments against

- prevention alone is enough
- no two stalls are the same
- danger of negative training
- cannot create surprise in simulators

Arguments in favour

- goal: show potential changes in a/c behaviour near stall
- history: pilots continue to pull near the stall
- an instructor-led exercise can teach the single important element: **PUSH**
- one CAN create surprise in simulators
- objective is to manage unexpected events

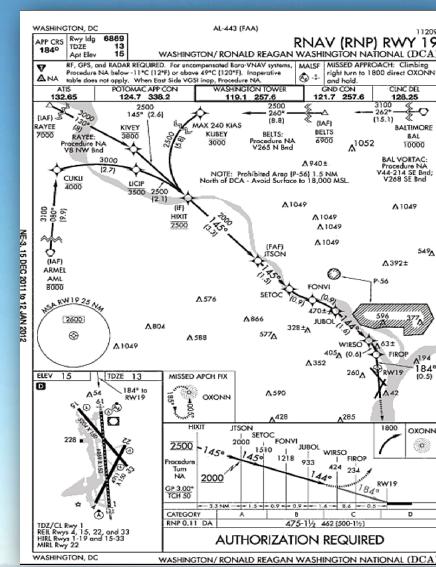
Recent FAA Experiment

- Conducted on 737NG FFS at FAA Oklahoma City
- Evaluate training benefits of three stall model types:
 - current model (matching flight test data to within a tolerance)
 - representative

flight-test validated

"No two stalls are the same"

- Models assessed in low, medium and high-altitude conditions
- Crews briefed on the sim, asked to apply OEM stall recovery template (see next slide)


Abbreviated Stall Recovery Template

As agreed by airframe manufacturer

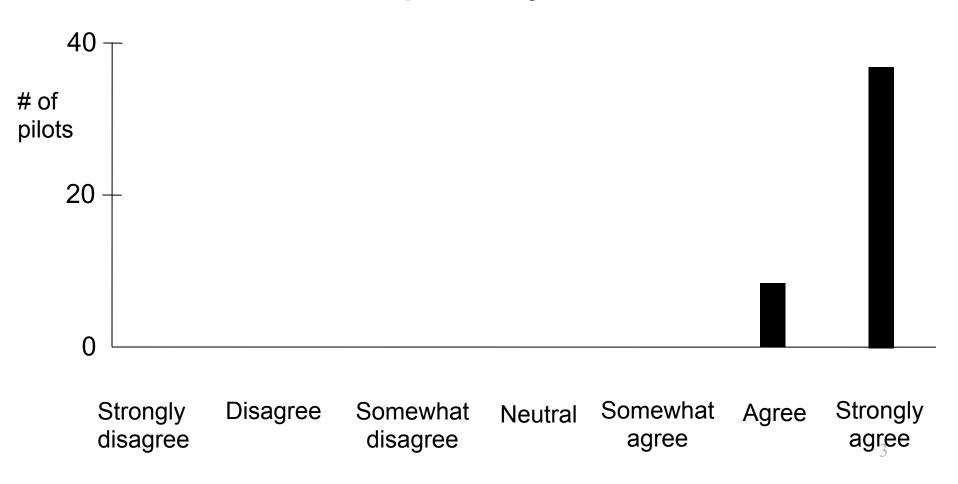
1 Autopilot and auto throttle	Disconnect
2 a) Nose down pitch controlApply until stall warning i	
b) Nose down pitch trimppiy until stall warning in	
3 Bank	
4 Thrust	
5 Speed brakes/Spoilers	Retract
6 Return to the desired flight path.	

Simulator Familiarization

- Each pilot told to fly this approach to Washington National Airport
- Good weather, except for possible thunderstorm at holding point
- Pilots expected a "diversion" (missed approach)

Successful recovery

Problematic stall recovery



Results

- Only 22% of pilots applied correct procedure
 - 10 out of 45 applied stall recovery procedure correctly when surprised
 - 19 out of 45 applied nose-down pitch until stall warning was eliminated
 - 20 out of 45 applied nose-down pitch before trying to control bank
 - 23 out of 45 stayed off the pedals (< 1 inch)
 - 34 out of 45 applied thrust as needed per template*
- No one crashed in this challenging scenario

Questionnaire Results

"I was surprised by that event"

Conclusion

- With proper training put into practice through a properly-qualified program, including
 - exposure to the prevention and recovery environment
 - integration of knowledge and skills
 - proper instruction
 - appreciation of psychophysical limits
- Through a GRADUATED IMPLEMENTATION, we can achieve the main learning objectives for LOC-I

Main Learning Objective

KEEP CALM IT'S ONLY AN UPSET

African Proverb

If we ignore reality, we will learn through accidents

www.idt-engineering.com

