

Validation & Implementation Considerations

Module 14 – Activities 11 to 17

European Airspace Concept Workshops for PBN Implementation

Objective

This module provides an overview airspace and Flight Procedure validation. It addresses Implementation considerations for PBN Airspace Concepts/

Why Do Validation?

- Validate Airspace concept and resulting Procedure
- Assess if ATM objectives are achieved
- Confirm flyability of Instrument Flight Procedures
- Identify possible problems and develop mitigations
- Provide evidence design is safe
- Validation is an ongoing process

Caution

RUBBISH IN RUBBISH OUT!!!

Validation methods

- Airspace
- Chalk and talk (pencil and paper)
- Modelling
- FTS
- RTS
- Flight Procedures
- Ground checks
- PC based simulation
- Full Flight simulators
 - FMS simulator (Smiths)
- Live trials

Chalk and Talk

Airspace Concept Validation

- General Considerations
 - Aircraft performance
 - Sterile environment
 - Special events

Airspace Modelling - Advantages

- Great flexibility
- Simple
- 'What if' investigations
- Easy to test large number of traffic samples
- Data derived from real traffic and ATC environment

Example

Airspace Modelling - Disadvantages

- Crude
- Only high level data
- Basic aircraft performance
- Does not replicate controller interventions
- Simplified
- No representation of METEO
- Subjective

Fast Time Simulation

- Used for sector capacity
- Quality data
- Flexible
- Good acceptance of results
- Evaluate TLS
- Used for Safety Case

FTS

FTS - Disadvantages

- Simplified model
- Only statistical data
- No active controller interaction during FTS
- Accuracy of models is key
- Aircraft performance
- Low representation of METEO conditions

Research Real Time Simulator

- Best method to simulate ATC trials
- High quality data
- Feed controllers/ pseudo pilots
- Human factor
- Can be part of Safety Case
- No risk to live ops
- Unlimited scope

15

Training Real Time Simulator

- Limited scope
- Designed for training ATC
- Aircraft performance not representative
- HMI
- Not designed for post simulation evaluation needed for Airspace concept evaluation

Example

Flight Simulator

- High quality data
- Confirm design aspects
 - Fly-ability
 - Efficiency
 - Met impact
- Possible link to RTS

Flight Simulator

- But
 - Manual data collection
 - For range of aircraft types/meteo conditions time consuming and expensive
 - Pilots

Live ATC trials

- Most accurate
- Real data
- Feedback from all users

But

- Safety
- High detail required large effort for a concept evaluation
- Limited scope
- Limited flexibility

Project Checkpoint

Are we 'Good to Go'?

Procedure Validation

Finalisation of Procedure Design

- Design according to Doc 8168
- Procedure ground validation
 - Obstacle
 - Data
 - Infrastructure
 - Fly ability
 - Evaluate
- Flight inspection
- ATC system considerations
- Awareness and Training material

Procedure Validation

- Ground Validation
 - Obstacle clearance
 - Charting
 - Coding
 - Flyability
- Flight Validation
 - Obstacle verification (optional)
 - Flyability (workload, charting, manoeuvring)
 - Infrastructure
- Database Validation

Instrument Flight Procedure Validation

- Always undertaken
 - Review of design
 - Impact on flight operations
- Qualitative assessment (ICAO Doc 9906)
 - Obstacle
 - Terrain
 - Navigation data
 - Flyability
 - Charting

Ground Validation

- Obstacle clearance
 - Independent review by procedure designer
- Charting
 - Independent review

Independent review – can be part of same organisation

- Coding
 - Software tool (e.g. Smiths PDT) or
 - Expert review
- Flyability software tools (from PC-based to full flight simulator)
 - Not necessarily an issue with standard procedures (e.g. 'T' approaches), but critical for some aircraft types
 - Range of aircraft and meteo conditions

Ground Validation:Validate the Procedure

- Independent assessment
- Use of validation tools
- Use of aircraft simulators
 - more than one type
- Flight checks
- Initial operational checks

Ground Validation: Validate the Procedure Flyabilty

Ground Validation: Validate Again with Different Conditions

Ground Validation: Different Aircraft Performance

CODING:

CA 500' AGL; DF LL001; TF FARKS; TF....

No Wind

A319

B747-400

Ground Validation: Wind Effect

CODING:

CA 500' AGL; DF LL001; TF FARKS; TF....

ICAO Wind from 045°

A319

B747-400

Ground Validation: Countered by Speed Restriction

CODING:

CA 500' AGL; DF LL001; TF FARKS [210kts]; TF....

ICAO Wind from 045°

A319

B747-400

Ground Validation: Leg Length Too Short

CODING:

CA 2000' AGL; DF BRW02; TF HUL...

No Wind

ATR42

B747-400

Ground Validation: Leg Length Acceptable

CODING:

CA 2000' AGL; DF BRW02; TF HUL...

No Wind

ATR42

B747-400

Flight Validation

- Obstacle verification
 - Necessary where full obstacle survey cannot be assured
- Flyability
 - Detailed workload and charting assessments, but
 - High level qualitative assessment of manoeuvring only (rely mainly on Ground Validation)
- Infrastructure assessment
 - Runway markings, lighting, communications, navigation etc

Flight Inspection

- Flight inspection determined by:
 - Infrastructure assessment
 - Identified in Activity 6 and validation process
- Undertaken in accordance with ICAO Doc 8071
 - Checking NAVAIDs in compliance with SARPS

Flight Inspection

- Flight Inspection addresses:
 - Navaid performance for DME/DME RNAV
 - Unintentional interference for GNSS

DME Tasks

- Need to confirm valid DME pairs
 - Expected coverage and field strength
 - If gaps are present, need to know exact area
 - Range accuracy within Annex 10
- Need to identify DME's that degrade the navigation solution
 - Propagation distortions
 - Either effect can be removed (small local reflector) or

Pilot needs to deselect

RNAV DME Flight Inspection Planning

- Infrastructure Assessment preparation to make inspection efficient
- Identify:
 - Candidate DME pairs and associated coverage
 - Including expected gaps in coverage, if any
 - Candidates for exclusion:
 - Propagation path near horizon or significant terrain
 - Second DME on same channel within line of sight
 - ILS/DME facilities (offset bias?)
 - Minimum/maximum height profile for Navaid coverage validation
- PANS-OPS, ATC Operations, Engineering and Flight Inspection Organisation jointly plan inspection flight

Publication and Coordination with Data houses

RNAV Procedure Description

- Procedures are currently published as charts and as textual descriptions.
- The charts are used by the pilots and ATC.
- Database providers require clear, and unambiguous procedure descriptions and use the charts to validate/check.

RNAV Procedure Description

- RNAV procedures defined by:
 - Sequence of waypoints
 - Identifier
 - Co-ordinates
 - Fly-over/fly-by/fixed radius
 - Path Terminators ARINC 424
 - Altitude restrictions
 - Speed restrictions
 - Direction of turn
 - Required navaid

Procedure Description for Pilots

Waypoint sequence

Fly-over/fly-by/fixed radius

Speed/Altitude Restrictions

Leg distance & magnetic track

Fix information

Turn direction

Procedure Description for Database Providers

- Textual description is usually used to provide formal statement of procedure.
 - Often open to interpretation.
- RNAV procedures require more specific details including path terminators.
 - Can result in lengthy descriptions.
 - Alternative descriptive methods were adopted by OCP (now IFPP):
 - Tabular layout
 - Formalised textual description
 preferred by data houses
 - Formalised short-hand description

Waypoint Identification

- Significant points
 - identified by co-located navaid or by unique five-letter pronounceable "name-code" (5LNC).
- Some waypoints (Tactical Waypoints) in the terminal area used for vectoring for sequencing and must be easy to enter in an RNAV system.
 - 5LNCs not appropriate for this (ALECS, ALEKS, ALEX).
 - No information on order in procedure for "Go Direct".
 - Naming confusion
- IFPP introduced concept of strategic and tactical waypoints

RNAV Procedure Identification

- RNAV RWY 23
- RNAV(DME/DME) RWY 23
- RNAV_(GNSS) RWY 23 RNP RWY 23
- RNAV_(RNP) RWY 23 RNP RWY 23 (AR)

STATE LETTER – SL24/2013 proposes changes:

Charting Altitude Restrictions

An altitude window: FL220

10,000

An "at or above" altitude: 7000

A "hard" altitude : 3000

An "at or below" altitude: 5000

FMS/RNAV Limitations

- Airspace Design often wants STARS to a metering fix and STARs to join to initial approach Fix for each runway
- Cannot have two STARs in FMS
- Airway and approach transitions needed

Implementation

Go/No Go Decision

Pre-Implementation Review

- Are goals met?
- Does design meet needs?
- Safety and performance requirements met?
- Are training requirements established?
- Are changes to ATM system and AIP needed?

ATC System Integration Considerations

- May be required
- Could include:
 - Modifying FDP
 - Changes to RDP
 - Changes to ATC situation display
 - New or modified ATC support tools
 - Alterations on issuance of NOTAMS

Awareness and Training

- Success relies on good understanding
- Must address all involved stakeholders
- Nav Specs provide training requirements for:
 - Flight Crew
 - ATCos
- Must be timely but not rushed
- Use Implementation team as 'champions'

Implementation

- Team members to support OPS
 - At least 2 days prior
 - During
 - A minimum of one week after
- Monitor process
 - Redundancy or contingency procedures
 - Support controllers and pilots
- Keep LOG system for Post Implementation review

Post Implementation Review

- Keep LOG system Post Implementation review
 - Determine if objectives are met
 - Mitigate any unforeseen events
 - Measure!
 - Collect Evidence for System Safety Assessment
 - Demonstrate Safety of System assured
 - i.a.w. ICAO Safety Management Manual Doc 9859

DO NOT FORGET

- POST IMPLEMENATION ASSESSMENT
 - Objectives met
 - Safety issues
 - Improvements
 - Quality process

Lessons Learned

- B-RNAV
 - Phased
 - Connectivity
- P-RNAV
 - Chicken and the egg
 - Capable versus approved
- TMA projects

Airspace Concept Workshop

THANK YOU

Tabular Description

RNAV Approach												
Path Terminator	Waypoint Name	Fly Over	Course/Track/ Heading °M (°T)	Turn Direction	Altitude Constraint	Speed Constraint	Required Navaid	Bearing/ Range to Navaid	VPA/ TCH			
IF	SUSER	-	-	-	+5000	250	-	LOM 262/29	-			
TF	CV023	-	-	-	4000	-	-	-	-			
CF	CV024	-	348° (347.8°)	-	2680	150	OKE	-	-			
TF	RW35L	Y	-	-	370	-	-	-	-3°/50			
FA	RW35L	-	348° (347.8°)	L	770	-	OKE	-	-			
DF	SUSER	Y	-	-	5000	-	-	-	-			

RNAV SID											
Path Terminator	Waypoint Name	Fly Over	Course/Track/ Heading °M (°T)	Turn Direction	Altitude Constraint	Speed Constraint	Required Navaid	Bearing/ Range to Navaid	Vertical Path Angle		
FA	RW20	-	201° (203.3°)	R	400	-	-	-	-		
DF	FOKSI	-	-	-	-	250	-	-	-		
TF	PF213	Y	345° (346.8°)	-	+5000	250	-	OKE 330/30	-		

Strategic Waypoint

- A waypoint in the terminal area which is:
 - Of such significance to the ATS provider that it must be easily remembered and stand out on any display, or
 - Used as an 'activation point' to generate a message between computer systems when an aircraft passes it.
- Strategic waypoints are identified with 5LNCs unless they are colocated with a navaid, when the 3 letter navaid ID is used.

Tactical Waypoint

- Tactical: a waypoint which is defined solely for use in the specific terminal area and has not been designated a strategic waypoint.
- Identified as AAXNN, where:
 - AA the last two characters of the aerodrome location indicator;
 - X a numeric code from 0 to 9 (N, E, W and S may be used instead if a State has a requirement for quadrantal information)
 - NN a numeric code from 00 to 99.

