

This document is not to be reproduced, modified, adapted, published, translated in any malerial form in who or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space.

Ref. = ACAC FDU 20171107 Template Ref. = 83230347-DOC-TAS-EN-004

2017 Thales Alenia Space

SBAS services definition for Civil Aviation

NPA: Non Precision Approach - LNAV

- ☐ Provided to ensure horizontal guidance approach for aircraft using augmented GNSS.
- ☐ Vertical guidance being ensured by aircraft baro-altimeter or other conventional means.

APV-I: Precision Approach - LNAV/VNAV

- ☐ Provided to ensure precision approaches using augmented GNSS for horizontal and vertical aircraft guidance
- ☐ Decision Height: 250ft

SBAS performance allows RNAV5 and RNAV1 capabilities for "En-Route" and "Terminal Area" for aircraft using augmented GNSS.

Multiple Civil Aviation Services relying on a single SBAS infrastructure

Targeted Service Performances

Services performance:

1- Aeronautical (Safety of Life)

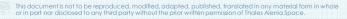
7 131 311 313 113 311 311 311 311 311 31					
	En route	Terminal	NPA	APV-I	
Time to Alarm	300 s	15 s	10 s	10 s	
Horizontal Alert Limit	2 NM (3704m)	1NM(1852m)	0.3 NM (556m)	40m	
Vertical Alert Limit	N/A	N/A	N/A	50 m	
Integrity risk	1e-7 / h	1e-7 / h	1e-7 / h	2e-7 / approach	
Continuity risk	2.5 to 5 10-4/h	2.5 to 5 10-4/h	2.5 to 5 10-4/h	10-3 to 10-5/15s	
Horizontal accuracy (95%)	3700m (2.0 NM)	740m(0.4NM)	220 m(720feet)	16m(52 feet)	
Vertical accuracy (95%)	N/A	N/A	N/A	20 m (66 feet)	
Availability	0.99 to 0.999	0.99 to 0.999	0.99 to 0.999	0,99	

2- Non Aeronautical (Positioning service -Non Safety of Life)

	Positioning Service		
Horizontal accuracy	1 m		
Vertical accuracy	2 m		

APV-I the most demanding performance

Applicable Standards

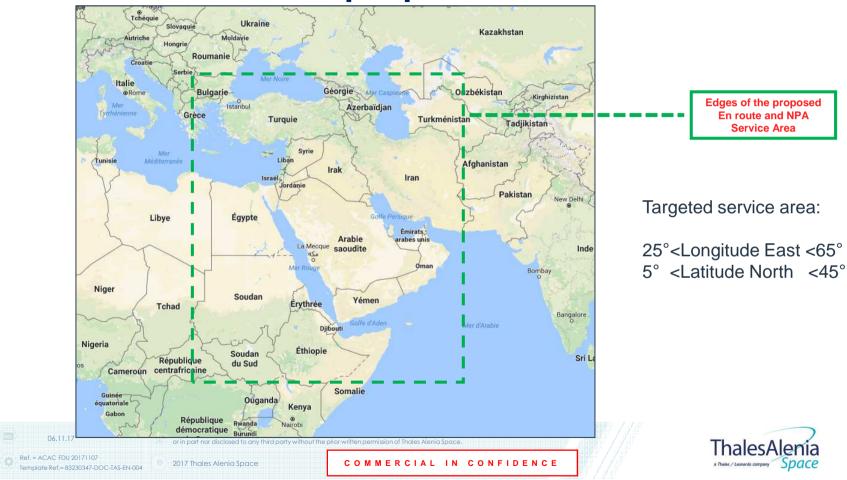

- ☐ SBAS and GPS applicable standards
 - ➤ MOPS D with Change 1 (RTCA/DO-229D)

2017 Thales Alenia Space

> SARPS (ICAO Annex 10 Vol 1)

SBAS interoperability ensured with international Standards

APV-I proposed Service Area



Edges of the proposed APV-I Service Area

This Service Area includes the following countries: Bahrain, Iraq, Kuwait KSA, Oman, Qatar, UAE, Yemen. (GCC states plus Yemen and Iraq).

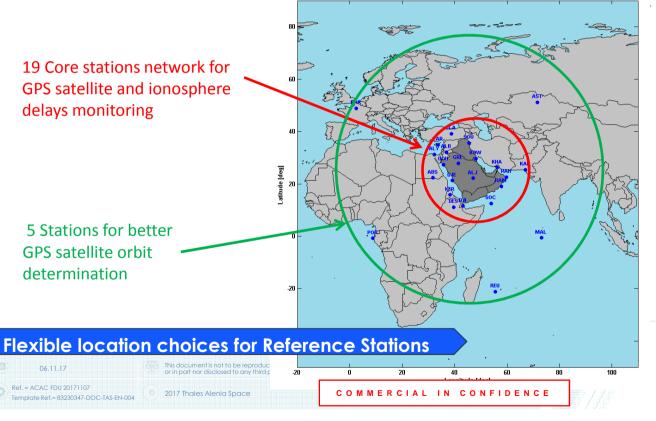
En route and NPA proposed Service Area

Definition of an Autonomous SBAS on GCC, Yemen and Iraq

Main features:

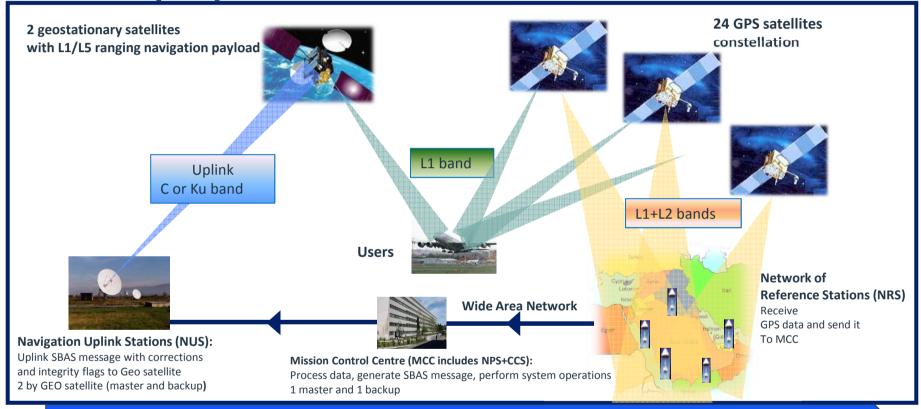
- > **Services**: En route, NPA, APV-I for aviation and Positioning service for other domains.
- > APV-I Service Area: Bahrain, Iraq, Kuwait, Kingdom of Saudi Arabia, Oman, Qatar, United Arab Emirates, Yemen.
- > Satellite configuration: 24 GPS and 2 GEOs with SBAS ranging payloads
- > Reference station network:
 - ✓ 24 Reference stations in total.
 - ✓ Most of the Reference stations will be installed inside the countries listed above and some outside the targeted area.
 - ✓ 5 Reference stations out of 24 will be located far from the Service Area. Need of these Reference stations for orbit algorithms.

Autonomous SBAS with a full sovereignty

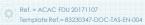


Reference stations network

24 reference stations network defined as baseline to ensure performance over the requested countries



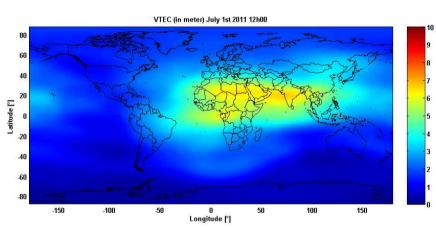
These Reference Station locations are depending upon many criteria such as:


- Optimisation of SBAS system performance;
- Clear RF environment;
- Availability of Hosting site with access to power supply and Data communication;
- Easiness of access for operation and maintenance.

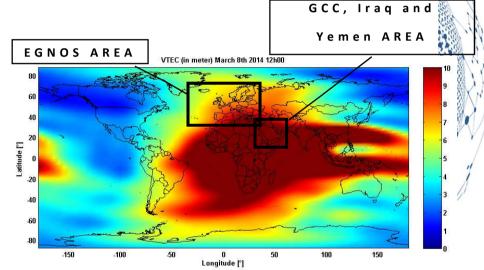
SBAS proposed architecture

Distributed architecture with flexible location choices

2017 Thales Alenia Space



Ionosphere scenario for performance assessment


Middle East region undergoes equatorial ionosphere conditions which are impacting

GNSS signals acquisition and tracking

Positioning accuracy.

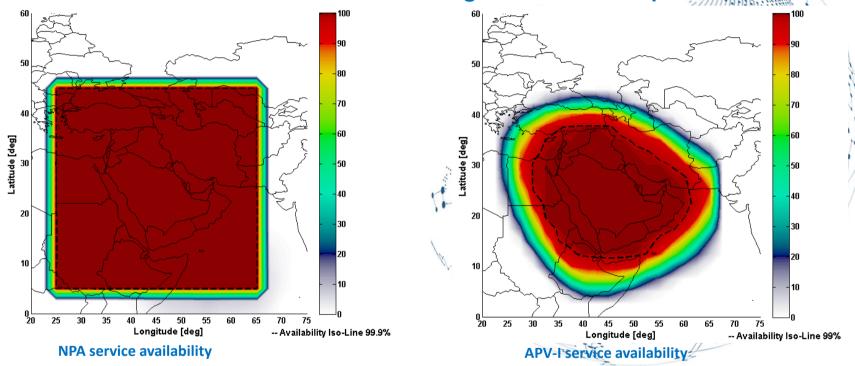
Nominal ionosphere condition day (B-Class Solar Flare level)

Day chosen for SBAS-performance/demonstration (M-Class Solar Flare level) (March 8th 2014)

Performance assessment must be done with disturbed ionosphere condition day

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Tholes Alenia Space.

Ref. = ACAC FDU 20171107
Template Ref. = 83230347-DOC-TAS-EN-004


2017 Thales Alenia Space

C O M M E R C I A L I N C O N F I D E N C E

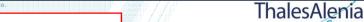
Performance Results

SBAS Services Performance achieved using disturbed ionosphere data

Full performance achievement for APV-I and NPA services

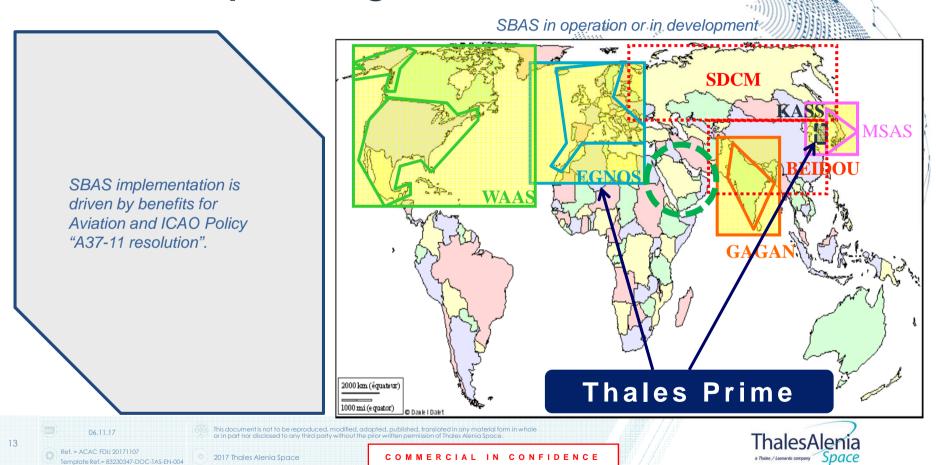
00.11.117

or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space


2017 Thales Alenia Space

Development of SBAS system

- Development schedule (until technical qualification)
 - About 4 years
- > Dates of need for GEO1 and GEO2 payloads in orbit (for system testing)
 - Geo 1: 2,5 years
 - Geo 2:3 years
 - => First Signal in Space available 3 months after Geo1 availability (for System testing period)
- > Service lifetime: at least 20 years and more with upgrade.
- > Service available for all categories of airspace users: Major Airlines, Regional aviation, General and Business aviation, Helicopters, Aerial work and Light aviation.


SBAS system suitable and certified to enhance Aviation Safety and foster adoption of ADS-B with integrity

SBAS: a Spreading Trend

2017 Thales Alenia Space

nplate Ref.= 83230347-DOC-TAS-EN-004

Acronym definition

SBAS: Space Based Augmentation system

EGNOS: European Global Navigation Overlay System

NRS: Navigation Reference Station(Reference sensors)

WAN: Wide Area Network (Data Communication Network)

NPS: Navigation Processing Station (Processing Set & Check

Set)

CCS: Centralized Control Station

MCC: Mission Control Center

NUS: Navigation Uplink Station

TAS: Thales Alenia Space

GNSS: Global Navigation Satellite System

GPS: Global Positioning System

ICAO: International Civil Aviation Organization

MOPS: Minimum Operational Performance Standards

SARPS: Standards and Recommended Practices

NAVAIDs: Navigation Aids

ILS: Instrument Landing System

GBAS: Ground Based Augmentation System

CAT I: Category I

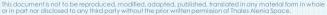
ADS-B: Automatic Dependent Surveillance Broadcast LPV: Localizer Performance with Vertical Guidance

APV-I: Approach with Vertical guidance Category I

PBN: Performance Based Navigation

GPS L1: Aviation Radio Navigation Service (Cent. Freq. =

1575.42 MHz)


GPS L2: Radio Navigation Satellite Service (Cent. Freq. =

1227.6 MHz)

