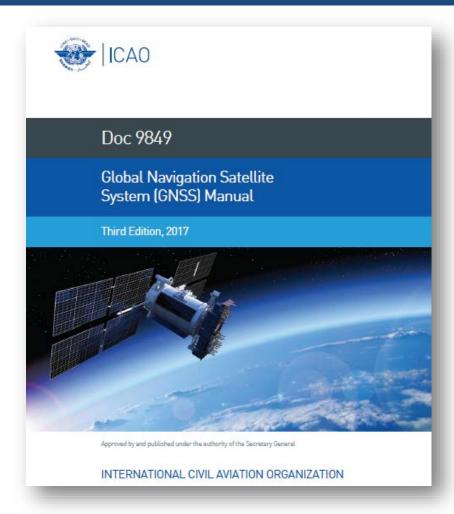
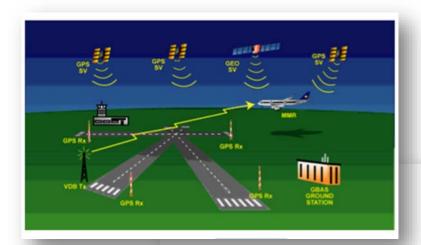
Qatar GBAS Project

Doha, Qatar 12-13 December 2023 NAV-AIDS Unit, Electronics Engineering Section Air Navigation Department, QCAA



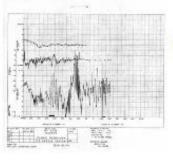
Scope of the Presentation

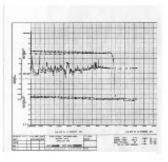
- A glimpse of GNSS and GBAS
- Working Principle of GBAS and its function
- Advantages of GBAS
- Qatar's endeavour towards GBAS Implementation
- > The road map ahead



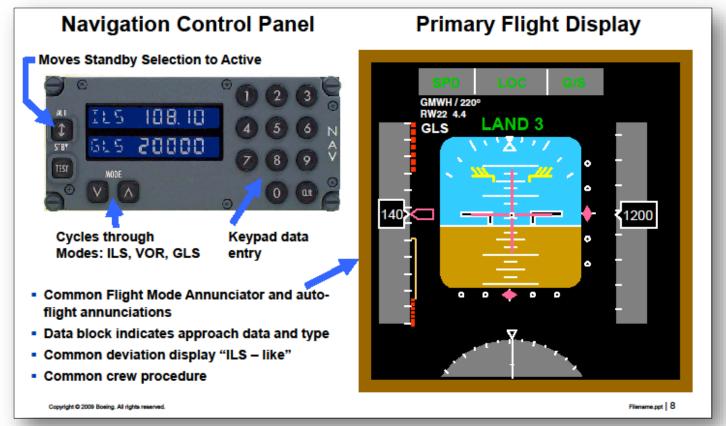
- GBAS uses monitoring stations at airports to process signals from core constellations and broadcast corrections and approach path data to support precision approach operations.
- As of 2017, approximately 140 GBAS stations were certified and transmitting SARPs-compliant signals, about half of which have published procedures for CAT I operations;
- a number of prototype stations provide signals for test and evaluation, several of which are used for validation of GBAS approach service types to support Category II/III operations;
- over 100 airlines have GBAS equipage, totalling over 2 000 aircraft. GBAS is used in daily revenue service in several States.

- GBAS (Ground Based Augmentation System) is a satellite-based precision approach aid for aircraft landings.
- GBAS works with the satellite-based GPS navigation system.
- According to ICAO/Eurocontrol planning, GBAS will in the long term replace the current ILS (Instrument Landing System), due to increased accuracy and lower operational costs.


CAT-I GBAS in Operation			
Table1. CAT- J. GBAS Status			
Airport	State	Operation start	
Bremen airport	Germany	Feb.2012	
Houston Airport	USA	Apr.2012	
Newark Airport	USA	Sep2012	
Málaga airport	Spain	May2014	
Sydney Airport	Australia	May2014	
Frankfurt Airport	Germany	Sep2014	
Zurich Airport	Switzerland	Oct2014	
Moscow airport+100	Russia	2016∼	
Melbourne Airport	Australia	May2019	
CAT-I GBAS installed (in Preparation for Operation)			
Kimpo Airport	Korea	Evaluating	
Shanghai Airport (Pudong)	China	Evaluating	
Chennai airport	India	Evaluating	
Rio de Janeiro Airport	Brazil	Evaluating	
St. Helena Airport	UK	Evaluating	
GBAS planned (including under installing)			
Perth / Brisbane Airport	Australia	Under Planning	
Kuala Lumpur Airport	Malaysia	Under Planning	
Dubai Airport	UAE	Under Planning	
Dakar Airport	Senegal	Under Planning	
John F. Kennedy Airport	USA	Under Planning	
La Guardian Airport	USA	Under Planning	
Seattle Airport	USA	Under Planning	
San Francisco airport	USA	Under Planning	
Balice Airport	Poland	Under Planning	
Haneda Airport	Japan	Under Planning	



GBAS



Glide slope Radar Alt Localizer

Boeing GLS:737NG Crew Interface


Working Principle of GBAS and its function

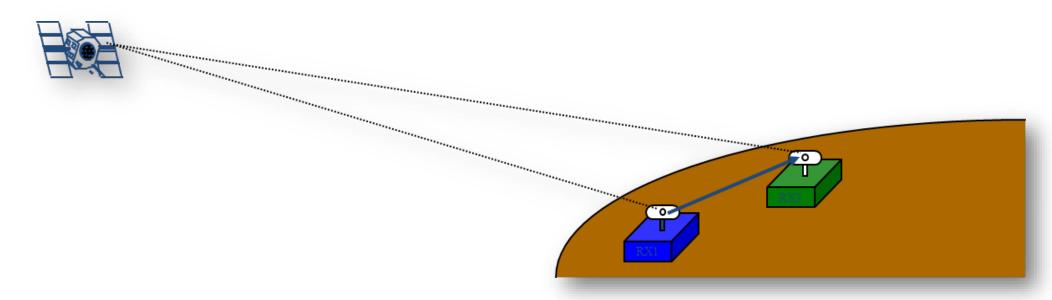
How Does GBAS Work? - Functions of the GBAS Ground Station

GBAS Function: Ground-based correction of the GPS data sent from the satellite.

The inaccuracy, which we know from car navigation systems, needs to be corrected.

The GPS satellites send positioning data to the GBAS Ground Station, where the signals are corrected and sent to the aircraft.

- → This is why GBAS works more precisely than the GPS in cars.
- ➤ **GBAS Function: Transmission of approach path data**The details of the approach path are sent to the aircraft on final approach.



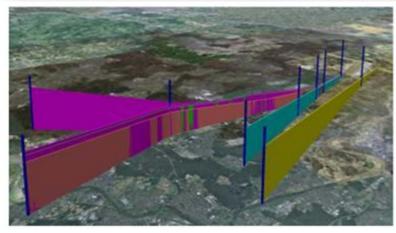
Working Principle of GBAS and its function

LOCAL AREA DIFFERENTIAL PRINCIPLE

I - Basic Principle

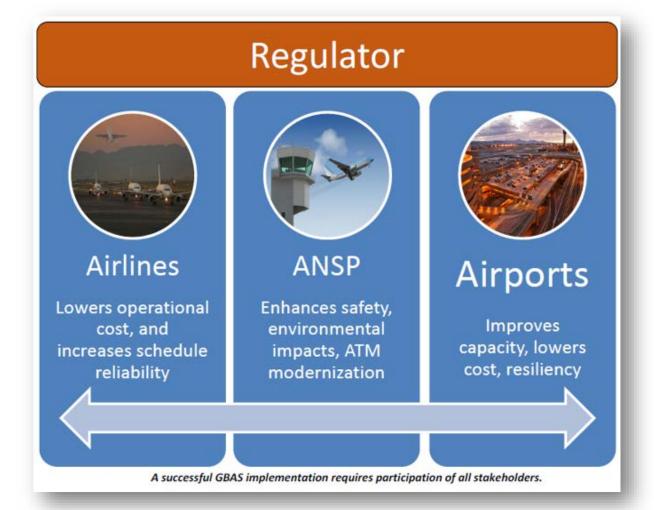
> Measurements made by two receivers are affected by the same errors as long as these two receivers are not too far from each other.

Working Principle of GBAS and its function


The GBAS Ground Station Consists of Four GPS-Receivers (RSMU), One Transmitter (VDB) and a Shelter

Advantages of GBAS

- One GBAS Ground Station is sufficient for all of the airport's runways. Up to 49 approach procedures can be transmitted from one GBAS Ground Station.
- Due to a more flexible approach path adaptation (of the glide slope and path) noisereduced approaches are possible by avoiding flying over densely populated areas.



Animation/Foto: Honeywell

Advantages of GBAS

Qatar's Endeavour towards GBAS implementation

- ➤ In 2019, feasibility study was carried out for the Ionospheric effect on Navigational Satellite's signals over Qatar.
- ➤ In 2022, the infrastructure was established to support the collection of iono data and its effect on GPS signals are being analysed and recorded.

Qatar's Endeavour towards GBAS implementation

Qatar's Endeavour towards GBAS implementation

> The ionospheric study was planned for one complete year commencing Oct 2022.

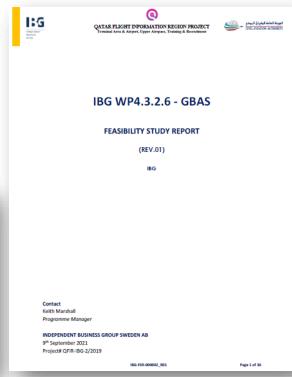
lonospheric analysis report were provided on quarterly basis.

October 23 , 2022; December 13 , 2022

Candidate days for 2nd Quarter

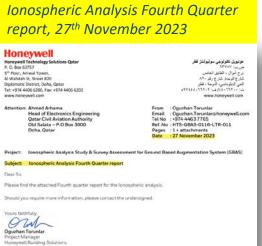
March 24, 2023; April 15, 2023; April 23, 2023

□ Candidate days for 3rd Quarter


June 27, 2023 ; July 31, 2023

□ Candidate days for **4**th **Quarter**

September 18, 2023; September 24, 2023


Ionospheric Study over Qatar's Hamad and Doha International Airport

Ionospheric Analysis First Quarter report, 16th Feb 2023

Qatar GBAS Project 16

Enclosures as above

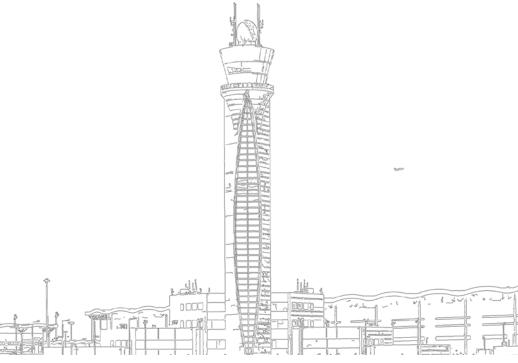
The roadmap ahead

Roadmap Ahead

- As per Honeywell, the final report of one year study will be submitted by 15th of December 2023.
- ➤ It will consider the analysis of 10 candidate days, but those days will be different from the days already covered in quarterly report
- We are keeping our fingers crossed as Qatar's Latitudes are just above 23.5 Degree parallel (Tropic of Cancer).

Optimistic Approach

LCAO's Doc 9849 GNSS Manual also talks about the long run benefits of having GBAS and Qatar always endeavour to remains on the forefront of cutting-edge technology.



Country	Qatar	
Latitude	25.286106	
Longitude	51.534817	
DMS Lat	25° 17' 9.9816" N	
DMS Long	51° 32' 5.3412" E	

SINCERE THANKS TO ALL OF YOU

