# THALES

ICAO Air Traffic Flow Management (ATFM)
Global Symposium
ATFM: together, bringing every destination closer

, billightig every destination closer

Singapore, 20 to 22 November 2017

# Innovation in ATFM: the rise of Artificial Intelligence

Trevor Kistan



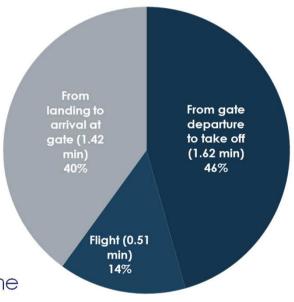
### Today: Big Data, Machine Learning & Predictive Analytics - 1/2

Thales CeNTAI Big Data & Analytics Laboratory & acquisitions

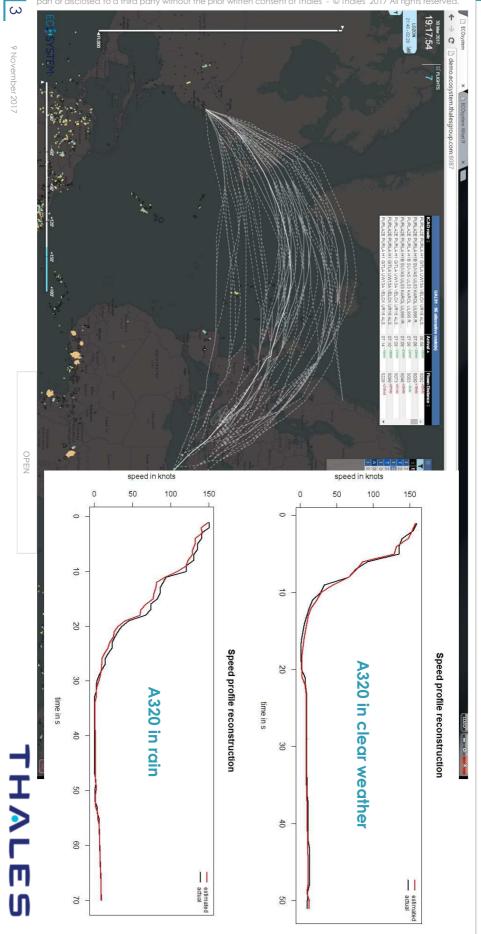
UNIVERSITE DIERRES MARIE CURIE

THALES

- Custom algorithms deployed in the Thales ECOsystem ATFM product
- > Trial on 16 months of data: European domestic flights, surveillance, weather...


### Forecast Estimated Time of Arrival

| Airlines (RMSE) | Thales (RMSE) |  |
|-----------------|---------------|--|
| 12.99 min       | 3.25 min      |  |


### Forecast Taxi Time

| Airport   | Average   | σx¯      | Thales (RMSE) |
|-----------|-----------|----------|---------------|
| Paris-CDG | 17.29 min | 4.41 min | 3.21 min      |
| Lyon      | 7.86 min  | 0.74 min | 0.52 min      |

- Identified main factors impacting ETA and Taxi Time
- > Superior to controls: Kernel Regression, Random Forest & Stochastic Calculus



# Today: Big Data, Machine Learning & Predictive Analytics – 2/2



# **Tomorrow: Human Machine Teaming**

### Human Machine Teaming

| Machine Strengths                                       | Human Strengths                                                                |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Precision Information acquisition Information synthesis | Creative and flexible Strategic decision making Adapt to unexpected situations |  |







Ψ<sub>1</sub> (Heart Rate)
Ψ<sub>2</sub> (Blood Pressure)
Ψ<sub>3</sub> (Blink Rate)
Ψ<sub>4</sub> (Blink Duration)

 $\psi'_{j,t} = f(\varphi_{i,t})$   $\psi_{j,ref}' = f(\varphi_{i,ref})$ 

 $\psi_j' = \sum_{i=1}^n \alpha_i \cdot \frac{\psi_{j,t'} - \psi_{j,ref'}}{\psi_{j,ref'}}$ 

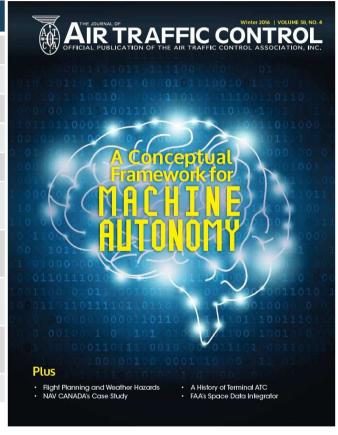
 $\begin{array}{c} \psi_1 ' \text{ (Vigilance)} \\ \psi_2 ' \text{ (Arousal)} \\ \psi_3 ' \text{ (Workload)} \\ \hline \psi_4 ' \text{ (Stress)} \\ \vdots \\ \psi_n ' \text{ (Fatigue)} \end{array}$ 

> What are the changing roles of humans in an environment where autonomous machines operate?

# Cognitive Teaming & Adaptive HMI

- > Assess and adapt to the operator's **cognitive state** 
  - workload, fatigue, stress, attention, arousal, intent
- > Contributes towards trusted autonomy




Acknowledgements :Yixiang Lim, Alessandro Gardi, Trevor Kistan, Subramanian Ramasamy, Roberto Sabatini



# Day After Tomorrow: Autonomy

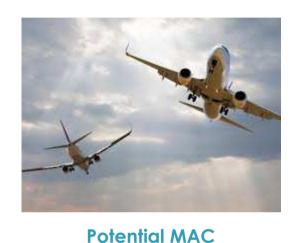
| or in<br>ved.                                                                                                                                                                         |    | Sheridan (aviation)                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------|
| lated, in any way, in whole or in<br>© Thales 2017 All rights reserved                                                                                                                | 1  | Human does it all.                                              |
| / way, ir<br>17 All rig                                                                                                                                                               | 2  | Machine offers alternatives &                                   |
| d, in any<br>ales 20                                                                                                                                                                  | 3  | narrows selection to a few, or                                  |
| anslateds - © Th                                                                                                                                                                      | 4  | suggets one, &                                                  |
| shed, tr<br>of Thale:                                                                                                                                                                 | 5  | executes if human approves, or                                  |
| apted, publi<br>en consent                                                                                                                                                            | 6  | allows human set time to veto before executes automatically, or |
| nodified, ad<br>he prior writt                                                                                                                                                        | 7  | executes automatically & informs human, or                      |
| not be reproduced, modified, adapted, published, franslated, in any way, in whole or in a third party without the prior written consent of Thales - © Thales 2017 All rights reserved | 8  | informs human after execution if the human asks it, or          |
| nay not be re<br>to a third po                                                                                                                                                        | 9  | informs human after execution if it decides to.                 |
| ment may<br>isclosed to                                                                                                                                                               | 10 | Machine acts autonomously.                                      |

Adapted from: Sheridan, T. B. Telerobotics, Automation, and Human Supervisory Control. The MIT Press. 1992.



| <b>SAE J3016</b> ( | (automobil | es) |
|--------------------|------------|-----|
|--------------------|------------|-----|

| 0 | No Automation          |
|---|------------------------|
| 1 | Driver Assistance      |
| 2 | Partial Automation     |
| 3 | Conditional Automation |
| 4 | High Automation        |
| 5 | Full Automation        |


Reference: SAE J3016: Taxonomy & Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems.

"The post-GDP traffic build-up is an **emergent phenomenon** arising from the interaction of traffic flow practices with airlines' business rules."

Reference: Liviu Nedelescu, "A Conceptual Framework for Machine Autonomy", ATCA Journal of ATC, Winter 2016, Vol. 58, No. 4

THALES

# Case Study: Future of the Traffic Collision Avoidance System (TCAS)





- Airborne Collision Avoidance System (ACAS X) is a Neural Network
  - > No "if-then-else" rules !!!
  - Trained on millions of simulated encounters & 180 000 real-life potential collisions
  - > BUT Trust: Verification, Certification and Explanatory Power

Reference: "Smarter Collision Avoidance", Aerospace America, June 2017.



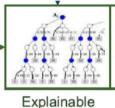
output layer

6

OPEN

# **XAI: Explainable Artificial Intelligence**

**EU General Data Protection Regulation,** Article 22



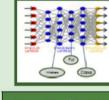





New Learning

**Process** 




Model

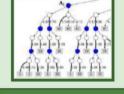
It has fur, whiskers, and claws. It has this feature:

This is a cat:

Explanation Interface \*

- · I understand why
- · I understand why not
- · I know when you'll succeed
- · I know when you'll fail
- · I know when to trust you
- · I know why you erred




### **Deep Explanation**

**Learning Semantic** Associations

H. Sawhney (SRI Sarnoff)

Learning to Generate **Explanations** 

T. Darrell, P. Abeel (UCB)



### Interpretable Models

Stochastic And-Or-Graphs (AOG)

Song-Chun Zhu (UCLA)

**Bayesian Program** Learning

J. Tenenbaum (MIT)



### **Model Induction**

Local Interpretable Model-agnostic Explanations (LIME)

C. Guestrin (UW)

**Bayesian Rule Lists** C. Rudin (MIT)



### HCI

Prototype **Explanation Interface** T. Kulesza (OSU/MSR)

UX Design, Language

Dialog, Visualization **ENGINEERING PRACTICE** 



### **Psychology**

Principles of Explanatory Machine Learning

M. Burnett (OSU)

**Psychological Theories** of Explanation

T. Lombrozo (UCB)



Reference: David Gunning, Explainable Artificial Intelligence (XAI), DARPA/I20, https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf

OPEN



# Potential applications of Automation & Al in ATFM

### Automation can be applied at 4 stages:

Reference: Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on systems, man, and cybernetics, 30(3), 286 - 297.

| Data Acquisition                                                         | Data Interpretation                                                                                          | Decision Selection                                                                                         | Action Selection                                                                                      |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Smart Sensors: Space-<br>based ADS-B, 4-D<br>weather cube,<br>biometrics | Identification & Prediction:<br>major traffic flows,<br>workload, congestion,<br>flight delays, arrival time | Decision Support:<br>scheduling, multi-agent<br>flow control, sector<br>planning, airport<br>configuration | Pre-tactical Conflict Detection and Al-based Resolution: hotspots, multiple flights or flows, weather |
| •••                                                                      |                                                                                                              |                                                                                                            |                                                                                                       |

