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Growth of global aviation fuel use
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* Aviation fuel use has increased linearly over the last 4+
decades despite world changing events.

Updated from Lee et al., Atmos. Environ., 2009



Aviation Impacts on Climate
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*100% Alternative Jet fuels will have no sulfur related emissions and have lower black carbon (BC) emissions; other emissions could be lower (e.g., NO,)
SAccount for radiative, chemical, microphysical and dynamical couplings along with dependence on changing climatic conditions and background atmosphere

FAA/ACCRI: Brasseur et al., BAMS, 2015.
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Outline
* Introduction
* Aviation fuel use and CO, Emissions
 Radiative forcing of current-day aviation from CO, and non-CO, agents
* NO, effects
* Aviation cloudiness
« Soot and sulfur emissions
» Short-term vs. long-term climate forcing agents
« Emissions from alternative aviation fuels
 Contrail avoidance for climate change mitigation




Aviation Radiative Forcing in 2005
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* In 2009, aviation radiative forcing components were quantified with best estimates
except for induced cirrus cloudiness.

 Since 2009, significant progress has occurred in the evaluation of aviation climate
processes and in quantitative modeling of global forcing.

Lee et al., Atmos. Environ. (2009)



Radiative forcing from contrails and contrail cirrus
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* Global distribution of contrail cirrus
radiative forcing for the aviation fleet
in year 2002 using global climate
model.

* Highlights the importance of contrail
shielding and changes in natural
cloudiness (-20%).

Burkhardt and Karcher, Nature Climate Change, 2011
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* Increased studies of the potential of
contrail mitigation through route planning.



Aviation Radiative Forcing in 2005
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» Based on new modeling and analysis results, many of the earlier best
estimates and uncertainties of aviation climate forcing terms require
updating by the aviation and atmospheric sciences communities.

* CO, is the exception since based on fuel use.
Lee et al., Atmos. Environ. (2009)



Final point: Climate change metrics
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» The use of climate change metrics is hampered by significant
challenges related both to scientific issues and policy choices.

* No single metric has been exclusively adopted by policymakers
(e.g., RF, GWP, GTP, ATR, etc.) or time scale.

IPCC, AR5, Fig.8.34, 2013
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Updated messages on aviation and climate

» ICAO/CAEP/ISG White Paper partnerships are a principal way to inform
policy makers of the state of science for aviation climate contribution:

» Significant progress has occurred in the evaluation of aviation cli
processes since the IPCC-1999 and ISG 2012 results.© <=

» Observational and model results have increased. confidence in contrails
and aviation cirrus RF. Biofuels and route planning may help mitigate
contrails and contrail cirrus.

» Care must be used in applying aV|at|on cI| ate metrics and making
comparlsons to other sectors.
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ICAO Partners multiplying environmentally

sustainable aviation action
Partners of the Aviation and Climate ISG WP
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Thank you for your attention



Scientific Basis for Aviation Climate Forcing

SEEE Aviation and the Global Atmosphere
A Special Report of IPCC Working Groups | and I
Intergovernmental Panel on Climate Change (IPCC), 1999

first comprehensive and quantitative evaluation’

“ | Aviation and global climate change in the 215t century
D. S. Lee, et al., Atmos. Environ., 2009.
Update of IPCC 1999 & IPCC AR4 Climate Assessment

Intergovernmental Panel on Climate Change (IPCC)
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2007, 2014
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