Climate Change and Aviation:

Risk Management and Environmental Choices

Herbert Puempel, Austrocontrol, WMO –CAeM ET-ASC, ICAO CAEP ISG,

Issues addressed:

- Overview of state of knowledge on impacts of climate on aviation from a science perspective
- Time lines: Long-term, decadal, interannual, resulting "weather" types
- Summarize state of knowledge regarding climate change risk and resilience – the stakeholder perspective
- A look at extreme phenomena

Confidence in Trends?

- Regional trends may differ significantly from each other (Francis and Vavrus, Screen and Simmonds)
- Observed trends in local scale-phenomena rendered unreliable by automation of observations (hail, tornadoes rarely detected by AWOS)
- Inter-annual variability (ENSO, NAO) very strong, intensity linked to climate state

Emerging consensus on some issues:

- 1. Temperature: Warming at the surface and upper levels [high confidence], cooling of stratosphere regionally
- More temp extremes at surface, two contributing factors:
 - Gaussian shifted to right (trivial)
 - Complex feedback mechanisms, increase in blocking highs (mid-lat
- 2. Small changes to jet stream
- Acceleration (obscured by large variance?), Poleward shift
- High-Amplitude low wave-number regimes (Francis and Vavrous, Coumou et al.)
- High uncertainty about CAT (probably shift of affected regions)
- Massive gaps in data over large areas (Africa, S. America,, Pacific)

Expected Changes...details for aviation

3. Storms and Ice

- More extreme thunderstorms (height of Cb tops, ice content)
 [High confidence]
 - High Altitude Ice Content expected to increase
 - Tornadic storms and hail: Models seem to idicate a positive trend post-2040, observational trend affected by increasing automation of observations)
- Extreme surface precipitation: more large events See Coumou and Lehmann [High confidence]
- Hail and windstorms, ice storm changes:
- Dramatic change of observing system from human to automated systems affecting statistics [Low confidence]

Manufacturers

- Strong dependency on regulatory (certification) envelope developed by regulators in response to changing conditions, in particular for:
- Take-off performance in hot&moist conditions
 - High altitude and "classical" icing
 - Frequency of lightning strikes in all climate zones (structural impact, life cycle impact)
 - Heavy hail (e.g. recent Delta incident!) max impact may have to be reconsidered
 - Area and period affected by sand storms, tropical cyclones, other extreme conditions
 - Changes in the location, variability and characteristics of typical flow pattern (jet streams)

Environmental choices: We need to talk!

- High-density air space and severe weather:
 Are new systems possibly geared too much
 towards fuel efficiency low carbon? (High
 Altitude Ice content, Volcanic Ash-Dust,
 Resilience to hail, lightning strike?
- Could new, very quiet aircraft be allowed to optimize approaches over built-up areas?
- How will extended heat waves and stagnant air interact with Nox input, leading to increase

ozone?

AMDAR - Coverage

- Coverage very good over USA & Western Europe;
- Coverage good over parts of Asia and Australasia;
- Coverage is poor elsewhere.

Benefits to Airlines

- A recent Study by South African Airways shows the benefits of using AMDAR data:
 - 1. Pre-departure « Dynamic Fuel Planning » Use latest possible weather information and forecasts for determination of fuel load.
 - 2. Pre-departure Flight Planning Use latest possible forecasts (Flight Plan/Winds Aloft) for latest possible adjustment of flight plan.
 - 3. In-flight Planning Request and use updated forecasts for in-flight adjustment and optimisation.

And what about alternative fuel?

- Need to analyze expected changes in agricultural productivity in changing climate
- Could massive increase in AF production impact regional and global climate?
- Could there be increased opportunities for agricultural production in hitherto unproductive regions?

Thanks....

- To the group at Potsdam Institute of Climate Change Impact for generous help and direction (Dim Coumou and Jascha Lehmann)
- Prof. Wuebbles for sharing very helpful insight and remarks at the CAEP Workshop in Washington, Feb 2015
- Rory Clarkson for invaluable technical advice

UNIVERSITY OF

CAMBRIDGE

TOTAL

Ames Research Center

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

VE RI

16 September 2015 Page 12

References:

- Francis, J.A. and S.J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming.
- Environ. Res. Lett., 10, doi:10.1088/1748-9326/10/1/014005.

•

- Daily Precipitation Statistics in Regional Climate Models: Evaluation and Intercomparison for the European Alps
- Christoph Frei (1), Jens Hesselbjerg Christensen (2), Michel Deque (3), Daniela Jacob (4), Richard G. Jones (5) and Pier Luigi Vidale (1)

•

- Exploring links between Arctic amplification and mid-latitude weather
- James A. Screen and Ian Simmonds
 http://onlinelibrary.wiley.com/store/10.1002/grl.50174/asset/grl50174.pd
 f?v=1&t=idpw7fa0&s=d3ecc578132dd2a0ed497a95d98d98bb59123d7d

•

References (cont.)

- Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer
- <u>Dim Coumou</u>a,1, <u>Vladimir Petoukhov</u>a, <u>Stefan Rahmstorf</u>a, <u>Stefan Petri</u>a, and <u>Hans Joachim Schellnhuber</u>a,b,

•

- Increased record-breaking precipitation events
- under global warming

•

- Jascha Lehmann1,2 & Dim Coumou1 & Katja Frieler1 (2015)
- Climatic Change
- DOI 10.1007/s10584-015-1434-y