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IntroductionIntroduction

Air transportation is: 
• Enabler of economic growth
• Catalyst for economic development

Environmental impact of aviation is:
• Significant concern at the global and local levels
• Local air quality is a rapidly growing concern

Issue must be addressed in a comprehensive way
• Reductions at source
• Operational procedures*
• Operational charges and restrictions
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• Sequence and spacing achieved between top-of-descent and metering point
(during descent from cruise a.k.a. initial portion of descent)

• No vectoring after passing metering point
(during descent to runway a.k.a. latter portion of descent)

• Metering point dependent on traffic conditions
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CDA for 2004 SDF Flight TrialsCDA for 2004 SDF Flight Trials
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LAQ, Noise, and Economic BenefitsLAQ, Noise, and Economic Benefits

Local emissions reduced
• CO below 3,000 ft reduced by 12.7% (B-767) and 20.1% (B-757)
• HC below 3,000 ft reduced by 11.0% (B-767) and 25.1% (B-757)
• NOx below 3,000 ft reduced by 34.3% (B-767) and 34.4% (B-757) 

Noise impact reduced
• Lower per aircraft noise levels 

(3 to 6 dBA; 7 to 15 NM from runway)
• Impact concentrated in narrow corridors

Economic costs reduced
• Fuel to fly last 180 nm to runway reduced by 

364 lbs/flight (B-767) and 118 lbs/flight (B-757)
• Time to fly last 180 nm to runway reduced by 

147 seconds/flight (B-767) and 118 seconds/flight (B-757)
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Challenge: Getting the “Right” SpacingChallenge: Getting the “Right” Spacing

Spacing (nm)
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R&D Activities in AtlantaR&D Activities in Atlanta

Flight test of time-based arrival fix metering*
• Demonstrate ability to set initial spacing based on aircraft type, weight, and wind, 

and deliver aircraft on final approach with very high accuracy in terms of both time 
and spacing

• Began on 16 April 2007
Time-based metering of arrivals from NE and NW destined to 8L/26R*

• Build upon results of 2007 flight test
• Starting in 2008 or 2009

Metroplex design for 2015 and 2025
• JPDO project to develop a concept of operations for 2015 and 2025 at ATL

* Partnership between Delta, Georgia Tech, FAA (HQ, ZTL, ZTL-A80)
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CDA for 2007 ATL Flight TrialsCDA for 2007 ATL Flight Trials
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Reduced Low Altitude VectoringReduced Low Altitude Vectoring
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Surface Movement OptimizationSurface Movement Optimization

What’s wrong with this picture?
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Growth Rates versus Phase of FlightGrowth Rates versus Phase of Flight
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Airport & Terminal Area Traffic FlowAirport & Terminal Area Traffic Flow
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Airport & Terminal Area QueuesAirport & Terminal Area Queues
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• Saturation point beyond which there is no 
significant gain in takeoff rate 

• Gate release control may be used to provide 
the desired number of aircraft

• Meets objectives of
• Maximizing throughput 
• Reducing  engine-run times
• Reducing fuel burn
• Reducing emissions 
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Two-Stage Optimization AlgorithmTwo-Stage Optimization Algorithm
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LAQ Benefits of OptimizationLAQ Benefits of Optimization
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ConclusionsConclusions

Operational procedures can provide (and are providing) much needed LAQ 
benefits: 

• Well designed CDA’s significantly reduce (in many cases eliminate) low altitude 
vectoring and reduce the time in the mixing layer

• Surface movement optimization significantly reduces taxi time and thus the 
emissions from surface operations (fastest growing emissions segment)

Development of operational procedures will also provide solutions to some 
fundamental air traffic control questions:

• How does terminal area trajectory prediction accuracy vary as a function of 
uncertainties in wind, aircraft weight, pilot performance?

• 4-D trajectory management limits
• Under what conditions can precise aircraft sequencing and spacing be achieved 

in the terminal area and one the surface with “strategic control?”
• Requirements for avionics, air traffic control decision support and wind prediction tools


