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Introduction

Air transportation is:

* Enabler of economic growth

e Catalyst for economic development
Environmental impact of aviation is:

* Significant concern at the global and local levels

* Local air quality is a rapidly growing concern
Issue must be addressed in a comprehensive way

* Reductions at source

* (Qperational procedures*

* (Qperational charges and restrictions
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Continuous Descent Arrival (CDA)
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(during descent from cruise a.k.a. initial portion of descent)

No vectoring after passing metering point

(during descent to runway a.k.a. latter portion of descent)
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Metering point dependent on traffic conditions

Sequence and spacing achieved between top-of-descent and metering point
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CDA for 2004 SDF Flight Trials
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LAQ, Noise, and Economic Benefits

Local emissions reduced
* CO below 3,000 ft reduced by 12.7% (B-767) and 20.1% (B-757)

e HC below 3,000 ft reduced by 11.0% (B-767) and 25.1% (B-757)
* NOx below 3,000 ft reduced by 34.3% (B-767) and 34.4% (B-757)

Noise impact reduced

* Lower per aircraft noise levels
(3to 6 dBA; 7 to 15 NM from runway)

* Impact concentrated in narrow corridors

Economic costs reduced

* Fuel to fly last 180 nm to runway reduced by
364 lbs/flight (B-767) and 118 Ibs/flight (B-757)

* Time to fly last 180 nm to runway reduced by
147 seconds/flight (B-767) and 118 seconds/flight (B-757)
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Challenge: Getting the “Right” Spacing

Required separation at TargeF spaci.ng at
runway metering point

Range of spacing at runway for
a given target spacing at
metering point;

/ Shaded area equal to

confidence that descent to
runway can be completed
without controller intervention;

Probability Density

Shape of distribution depends
on target spacing.

Spacing (nm)

ICAO Colloquium on Aviation Emissions with Exhibition 14 - 16 May 2007



Tool for the Analysis of
Separation and Throughput (TASAT)
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R&D Activities in Atlanta

Flight test of time-based arrival fix metering*

* Demonstrate ability to set initial spacing based on aircraft type, weight, and wind,
and deliver aircraft on final approach with very high accuracy in terms of both time

and spacing
* Began on 16 April 2007
Time-based metering of arrivals from NE and NW destined to 8L/26R*
* Build upon results of 2007 flight test
e Starting in 2008 or 2009
Metroplex design for 2015 and 2025

* JPDO project to develop a concept of operations for 2015 and 2025 at ATL
* Partnership between Delta, Georgia Tech, FAA (HQ, ZTL, ZTL-A80)
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CDA for 2007 ATL Flight Trials
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Reduced Low Altitude Vectoring
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Surface Movement Optimization

What's wrong with this picture?
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Growth Rates versus Phase of Flight
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Airport & Terminal Area Traffic Flow
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Airport & Terminal Area Queues
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Takeoff Rate (per minute)
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Two-Stage Optimization Algorithm
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Operational Benefits of Optimization

Increased throughput
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LAQ Benefits of Optimization

Strategy
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Conclusions

Operational procedures can provide (and are providing) much needed LAQ
benefits:

* Well designed CDA'’s significantly reduce (in many cases eliminate) low altitude
vectoring and reduce the time in the mixing layer

* Surface movement optimization significantly reduces taxi time and thus the
emissions from surface operations (fastest growing emissions segment)

Development of operational procedures will also provide solutions to some
fundamental air traffic control questions:
* How does terminal area trajectory prediction accuracy vary as a function of
uncertainties in wind, aircraft weight, pilot performance?
e 4-D trajectory management limits

* Under what conditions can precise aircraft sequencing and spacing be achieved
in the terminal area and one the surface with “strategic control?”

* Requirements for avionics, air traffic control decision support and wind prediction tools

ICAO Colloquium on Aviation Emissions with Exhibition 14 - 16 May 2007



