

IPCC Special Report on Aviation & the Global Atmosphere (1999) - an historic perspective

David Lister
UK Civil Aviation Authority

The IPCC Special Report (1999)

- International state-of-understanding of science, aviation technology and operations.
- Requested by ICAO to assist in decision and policy making.
- Developed aviation growth and technology scenarios to 2050.
- Reviewed potential mitigation options
- Policy neutral

Scope of the Report

- > Aircraft emissions
 - CO₂, H₂O, HC, CO, particles, NOx, sulphur compounds
- Current and future changes
 - 1992, 2015 (forecasts), 2050 (scenarios)
- > Impacts on
 - Climate and uv radiation
- Mitigation Options
 - Technology, Fuel and Operations, Regulatory, Market based
- No consideration of Local air quality impacts

Aviation Growth (CO₂)

Radiative Forcing (RF)

- > RF is a measure of the importance of a potential climate change mechanism.
- ➤ It expresses the perturbation or change to the energy balance of the Earth-atmosphere system in watts per square metre (Wm⁻²).
- Positive values of RF imply a net warming, while negative values imply cooling

Aviation RF in 1992 & 2050

Total Radiative Forcing from subsonic aviation

UV Effects

- > Considering only subsonic aircraft
 - Small decrease in uv at the surface of the earth
- > Including fleet of supersonic aircraft
 - Offsets the decrease due to subsonic aircraft
 - Overall effect is still a decrease

Aircraft and Engine Technology Options

- Technology advances have substantially reduced most emissions per passenger-km. However, there is potential for further improvements
- Engine efficiency improvements reduce the specific fuel consumption and most types of emissions, <u>but</u> without advances in combustor technology, NO_x emissions may also increase
- Any technological change may involve a balance across a range of environment impacts. For example:
 - carbon dioxide emissions, NO_x emissions at ground level,
 NO_x emissions at altitude, water vapour emissions,
 contrail cirrus production and noise

Fuel options

- There would not appear to be any practical alternatives to kerosene-based fuels for commercial jet aircraft for the next several decades
- Hydrogen fuel
 - may be viable in the long term, but would require new aircraft designs and new infrastructure for supply
 - would eliminate emissions of carbon dioxide from aircraft, but would increase those of water vapour
- Reducing sulphur content of kerosene will reduce SO_x emissions and sulphate particle formation

Operational Options

- Improvements in air traffic management (ATM) and other operational procedures could reduce aviation fuel burn by between 8 and 18%,
 - 6 12% from ATM improvements which are anticipated to be fully implemented in the next 20 years
 - A further 2-6% could come from improvements in other operational measures
- Improved operational efficiency may result in attracting additional air traffic

Regulatory, Economic & Other Options

- Improvements in aircraft & engine technology and in efficiency of air traffic systems will not fully offset the effects from the projected growth of aviation
- > Policy options to reduce emissions further include:
 - more stringent regulations
 - removal of specific subsidies and incentives
 - market-based options
 - voluntary agreements
 - research programmes
 - inter-modal substitution
- Most of these would lead to increased costs and fares

Key areas of scientific uncertainty

- > The influence of contrails and aerosols on cirrus clouds
- > The role of NO_x in changing ozone and methane concentrations
- The ability of aerosols to alter chemical processes
- ➤ The transport of atmospheric gases and particles in the upper troposphere/lower stratosphere
- The climate response to regional forcings and stratospheric perturbations

Key socio-economic and technological issues

- Characterisation of demand for commercial aviation services
- Methods to assess external costs and the environmental benefits of regulatory and market-based options
- Assessment of the macroeconomic effects of emission reductions in the aviation industry that might result from mitigation measures
- Technological capabilities and operational practices to reduce emissions leading to the formation of contrails and increased cloudiness
- The understanding of the economic and environmental effects of meeting potential stabilisation scenarios (for atmospheric concentrations of greenhouses gases)

The Report has ...

- Acted as a catalyst for further focussed research and development activities
- Drawn together aviation specialists and atmospheric scientists

The Report is...

- Unique in the integral involvement of technical experts from the aviation industry, alongside atmospheric scientists
- ➤ The most comprehensive assessment available of the effects of aviation on the global atmosphere
- The first IPCC report to consider a specific industrial subsector, though other equally deserve study
 - Available at www.ipcc.ch/pub/online.htm (IPCC special reports)

Questions?