

IPCC Emission Scenarios Importance for Assessing Aviation Contributions to Climate Change

Hans Schlager, Robert Sausen, Ulrich Schumann

DLR - Institut für Physik der Atmosphäre Oberpfaffenhofen, Germany

Chain of potential effects of emissions

- ➤ Emissions cause pos.& neg. forcings
- ➤Impact of emissions from one source depend on emissions from other sources
- Emissions impact climate and air quality

(Fuglestvedt et al. 2005)

ncreasing relevance

Increasing uncertainty

Characteristics of IPCC Scenarios

- Scenarios are alternative images of how the future might evolve
- Future emissions are determined by several driving forces:
 - demographic development
 - socio-economic development
 - technological change
 - environmental development
- Scenarios are the basis for climate change analysis
- A range of scenarios were developed all should be considered equally sound.

 (Details: IPCC SRES, 2007)

Emission Scenarios for CO₂ from all sources

- ➤ A1B: rapid economic growth, balance across all sources, fast intro. of new technologies, strong globalisation
- B2: moderate economic growth, diverse technological change, more oriented towards environmental protection, focus on regional levels

Climate Impact of Aviation

- Global aviation contributes to climate change by emissions of carbon dioxide (CO₂), nitrogen oxides (NO_x), water vapour, particles, contrails and cirrus changes.
- Carbon dioxide is the most important greenhouse gas. Its effect is independent of the altitude at which the emission occurs.
- Nitrogen oxides from aviation at subsonic cruise altitudes enhance ozone formation and reduce methane; both are greenhouse gases.
- Water vapour and particles emitted at certain altitudes can induce contrails and cirrus cloud formation, likely enhancing the greenhouse effect.

Annual air traffic growth rates

Trends

- Fuel consumption (CO₂-Emissions) in global aviation grew from 1990 – 2004 by 2 to 3 % / year.
- ➤ The global emissions of nitrogen oxides from aviation grew by 4 to 5 % / year.
- ➤ For the near future, further growth of global fuel consumption and global emissions of CO₂ and NO_x by aviation is to be expected.

Scenarios of aviation emissions to 2050

- ➤ IPCC (1999) based on GDP assumptions and ICAO air traffic statistics and forecasts
- ➤ FAST/QUANTIFY (European Project) based on GDP assumptions from IPCC-SRES and ICAO air traffic statistics and forecasts
- CONSAVE (European Project) based on GDP assumptions from IPCC-SRES and ICAO air traffic statistics and forecasts

Emission Scenarios for Aviation

Global Distribution of Aviation Emissions

latitude (degrees_north)

longitude (degrees_east)

(AERO2K, 2005)

Vertical Distribution of Aircraft Emissions

Radiative Forcing until 2000 from Global Aviation

Radiative Forcing until 2100 from Global Aviation

Temp. response from an annual pulse of aviation emissions

(Sausen et al., DLR)

Climate Forcing by Aviation (RF, Δ T)

Total RF / CO₂ RF: is not a constant factor

- ➤ The ratio of warming by aviation CO₂, ozone and contrails compared to warming by CO₂ alone depends on the scenario and time period considered.
- ➤ In the long term, warming induced by aviation CO₂ is largest.
- ➤ At short terms, warming by aviation NO_x and contrails is larger than that by aviation CO₂.

Conclusions

- Limiting global warming requires reductions in greenhouse gas emissions
- The relative contribution of aviation to global climate change depends on past emissions and emission scenarios
- > The aviation share in CO₂ emissions is presently about 2 %
- ➤ The aviation share in radiative forcing is presently 2-8%
- Scenarios of civil aviation CO₂ emissions in 2050 show an increase by factors 3.3 5
- ➤ The relative importance of short-lived (NO_x, contrails) and long-lived (CO₂) emissions depends on choice of timescale
- ➢ If aviation emissions continue to grow while other emissions get reduced, the relative importance of aviation contributions grows.
- ICAO need to be involved in further developments of IPCC scenarios