

# ICAO Colloquium on Aviation and Climate Change

## Comparing the climate impact of different transport modes

**Results from the QUANTIFY project** 

Robert Sausen

Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institut für Physik der Atmosphäre
Oberpfaffenhofen, Germany

Montreal, Canada, 12 - 14 May 2010

#### How can transport impact climate?

Changes in radiative forcing can be caused by

emission of greenhouse gases, including long-lived species like CO<sub>2</sub> and N<sub>2</sub>O, but also of water vapour



## CO<sub>2</sub> equivalent emissions of EU-27 \* Change since 1990



#### CO<sub>2</sub> equivalent emissions of EU-15 Change since 1990



### CO<sub>2</sub> equivalent emissions of EU-15 and USA Change since 1990



#### CO<sub>2</sub> equivalent emissions of EU-15 Change since 1990



#### **New EU target and consequences for transport:**

Reduction by 20 % relative to 1990



linear growth of transport emissions after 2007 assumed

#### How can transport impact climate?

Changes in radiative forcing can be caused by

emission of greenhouse gases, including long-lived species like CO<sub>2</sub> and N<sub>2</sub>O, but also of water vapour

emission of ozone precursors, like NO<sub>x</sub>

emission of particles and their precursors

triggering additional clouds (e.g., contrails, contrail cirrus) and

modifying natural clouds (e.g., ship tracks)



#### **QUANTIFY**

#### **Quantifying the Climate Impact of global and European Transport Systems**

Objective: To quantify the climate impact of the global and

European transport systems for the present situation and

for different scenarios of future development.

Co-ordinator: Robert Sausen, DLR-IPA

Participants: 41 from 19 countries <a href="http://ip-quantify.eu">http://ip-quantify.eu</a>

Duration: March 2005 to February 2010

Funds: 8.4 M€
Total costs 12.8 M€

**QUANTIFY-TTC** 





#### **NO**x emissions transport – all scenarios





#### Ozone perturbation by mode of transport



#### Efficiency of O<sub>3</sub> production for transport NO<sub>x</sub> emissions

Number of O<sub>3</sub> molecules produced per emitted NO<sub>x</sub> molecule

| road transport | $0.33 \pm 0.05$ |
|----------------|-----------------|
| shipping       | 0.54 ± 0.07     |
| aviation       | 1.63 ± 0.58     |

A NOx molecule from aviation produces five times as much ozone than a molecule from road transport.



## Methane lifetime change [%] due to a increase of transport emissions of 5%

| road transport | - 1.61 ± 0.25 |
|----------------|---------------|
| shipping       | - 4.12 ± 1.02 |
| aviation       | - 1.04 ± 0.40 |

 $CH_4$  lifetime in base case: 8.97  $\pm$  1.63 a No feedback factor is included.



#### Radiative forcing from aviation 2005





Total anthropogenic forcing 1.6 W/m<sup>2</sup>

**Aviation fraction:** 

CO<sub>2</sub> 1.6 %

Total 4.9 %



#### Radiative forcing [mW/m²] from different modes of transport





#### A caveat on radiative forcing

- © Radiative forcing is a good measure to understand what a selected process or sector contributed to climate change so far.
- Radiative forcing us a backward looking metric. It cannot be used for regulation which concerns future emissions.



#### A caveat on radiative forcing and a way out

- © Radiative forcing is a good measure to understand what a selected process or sector contributed to climate change so far.
- Radiative forcing us a backward looking metric. It cannot be used for regulation which concerns future emissions.
- A suitable solution would be a temperature based metric, e.g. the temperature change after a given time.
- This would allow to transfer non-CO2 effects in equivalent CO2, in particular if short-lived effects are of large importance like for aviation.



#### **Temperature changes for different QUANTIFY scenarios**







#### ICAO Colloquium on Aviation and Climate Change

#### **Conclusions**

- → The impact of transport, in particular aviation, on climate grows faster than the impact from other sectors of human activity.
- → The non-CO<sub>2</sub> effects of aviations (NOx, aviation induced clouds) are particular large in comparison to other modes of transport.
- → Climate optimised flight planning opens the chance for a smaller climate impact of aviation. 

  ⇒ See presentation by Schumann on Thursday
- → Currently, a temperature based climate metric appears to by most suitable to account for the non-CO₂ effects of aviation.

Further information:

http://ip-quantify.eu

QUANTIFY Stakeholder Meeting Brussels, 24 June 2010