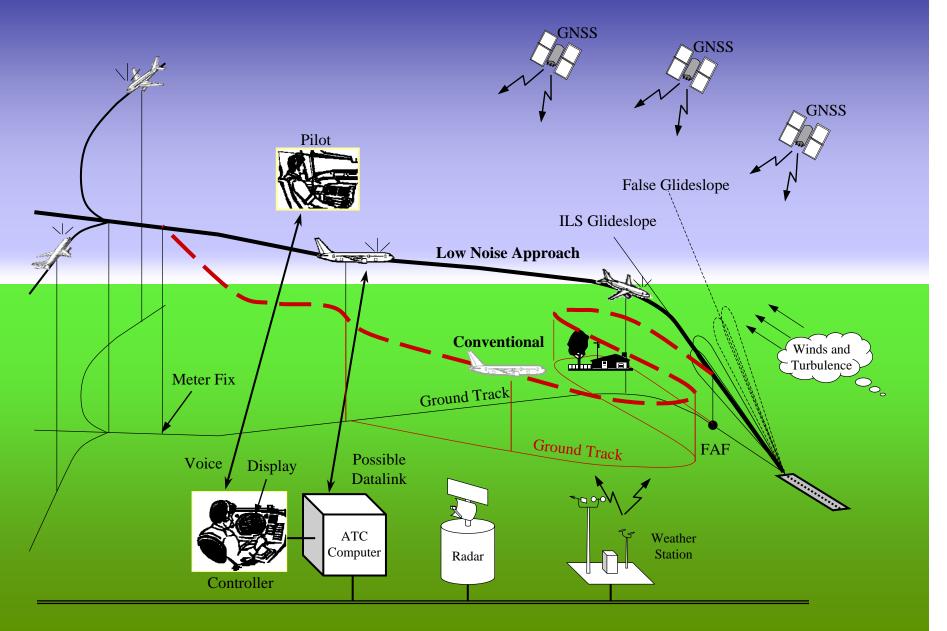


Partnership for AiR Transportation Noise and Emission Reduction

An FAA/NASA/TC-sponsored Center of Excellence

Continuous Descent Arrivals

James Brooks Georgia Institute of Technology


ICAO Workshop on Aviation Operational Measures for Fuel and Emissions Reductions
September 20-21, 2006

What is CDA?

- Continuous descent arrival (CDA) is a procedure where aircraft descend from a relatively high altitude without leveling off
 - Also referred to as continuous decent approach
- CDAs being developed at Georgia Tech are Area Navigation (RNAV) procedures where...
 - Vertical profile (ideally between cruise altitude and the runway but at least between 10,000 ft and the runway) optimized to:
 - Eliminate level segments
 - Minimize emissions, flight time, fuel burn, noise
 - Inter-aircraft separations determined a priori:
 - Minimize need for controller intervention (vectoring) at low altitudes

CDA and the ATC Environment

What are the benefits of CDA?

Noise

- Up to 6 dBA reduction in peak level noise
- Up to 30% reduction in noise contour area

Emissions (below 3,000 ft)

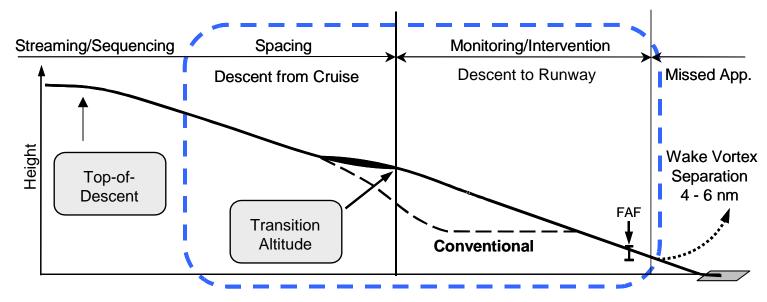
- Up to 20% reduction in CO
- Up to 25% reduction in HC
- Up to 35% reduction in NOx

Fuel

- 118 lb average reduction in B757 fuel burn
- 364 lb average reduction in B767 fuel burn

Time

- 118 sec average reduction in B757 flight time
- 147 sec average reduction in B767 flight time


Research Objectives

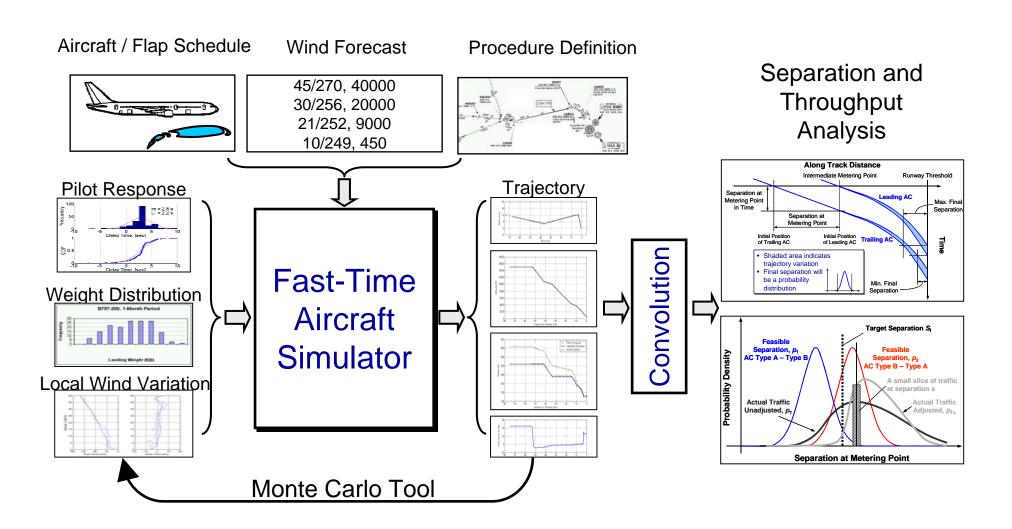
- Develop design framework, methodology, and tool to determine the set of waypoint restrictions and interaircraft separations that:
 - Eliminate level segments
 - Minimize vectoring at low altitudes
 - Minimize emissions, flight time, fuel burn, noise
- Given variability and uncertainties in...
 - Aircraft dynamics and weight
 - Flight management system (FMS) logic
 - Pilot response
 - Wind speed and direction
- And use framework, methodology, and tool to create...
 - CDA procedures throughout the US
 - Controller and pilot tools for heavy traffic scenarios

CDA Design Framework

- Controllers vector during descent from cruise altitude (top-of-descent) to transition altitude to establish separation and speed
- No planned vectoring during descent to runway i.e. below transition altitude
- Transition altitude dependent on traffic conditions

CDA Design Methodology

- Determine lateral profile
 - Set transition altitude based on air space segmentation and point where traffic merge
- Build wind model
 - Develop separate model for each definable subset of wind conditions
- Use Monte Carlo Simulation-based Tool for the Analysis of Separation and Throughput (TASAT) to determine:
 - Range of crossing altitudes (at each waypoint) for each aircraft type in "unrestricted" descent from cruise
 - Required separation at (or near) top-of-descent and at transition altitude for each pair of aircraft types in unrestricted descent from cruise


CDA Design Methodology (cont'd)

- Develop (if airspace is constrained) set of scenarios with different transition altitudes and waypoint (altitude and speed) restrictions
- Use TASAT to determine:
 - Required separation at (or near) top-of-descent and at transition altitude for each pair of aircraft types
- Determine "best" transition altitude, waypoint restrictions and required separations given:
 - Trade-off (if any) between emissions, fuel burn, noise, time, and throughput

Design Tool -- TASAT

Summary

- CDA is as cost effective means of achieving near-term reductions in noise and emissions
- Operators benefit from fuel and flight time savings
- Design framework, methodology, and tool has been developed and verified through flight test
- Positive feedback from controllers and pilot
- Framework, methodology, and tool being used to develop CDA procedures at US airports
 - e.g. ATL, LAX

Future Directions

- Fully automate design process
 - Automate the iterative use of TASAT
 - Formulate and implement non-linear optimization algorithm to drive iterations
- Study effects on noise, emissions, fuel, time (and the balance between them) of...
 - descent speed variation
 - altitude and speed constraints to allow for crossing traffic
 - multiple metering points
- Determine requirements and logic for controller and pilot decision support tools for higher traffic conditions