

Global NO_x 2004 per Envisat

Focusing Emission Reductions

Results from Recent Air Quality Modeling, Monitoring and Health Risk Assessments

Toronto Pearson International Airport

- •29.9 million passengers
- 5 runways
- 426,500 a/c movements per year
- \$4.4 B Terminal Dev.

Background

- 1990 Environmental Assessment for the Addition of 3 Runways
- Air Emissions not to Increase
- 1990s Emphasis on Criteria Pollutants
- 2000s Emphasis on VOC's and PM10/2.5
- Health Issues

Recent Toronto Studies

- Modeling and Health Risk Assessment –
 2004
- One Year Ambient Air Quality Study –
 2006 (Criteria Pollutants plus 160 OCs)
- Workplace Health and Safety Baggage Stripping and Cargo Tunnels -2005/6

Possible Problem – NO_x

- Dominant sources of NO_x emissions were aircraft (airport) and industrial point sources (off-site). Overall results.....
- NO₂ predicted to exceed 1-h AAQC/AQO (all years) but none measured in 1999-2000 and 2005-2006 studies

Year 2000 Predicted Maximum 1-Hour NO_X Concentration, Phase 3

Airport Emissions 1-Hour VOC

GREATER TORONTO A REPORTS AUTHORITY?

Off-site Emissions 1-Hour VOC

On and Off-site Emissions 1-Hour VOC Concentration

AQ Study Results

- The maximum predicted 1-hour and annual NOx concentrations are expected to remain unchanged for future years, relative to base conditions.
- There are no predicted health risks associated with any of the other criteria pollutants examined

Results: <u>Long-Term Impacts</u> Airport Emissions

Carbonyl Compounds

- Results for Carbonyl Compounds
 - (15 compounds including Formaldehyde, Acetaldehyde, Acrolein, etc.)
 - It was determined that at these concentrations, no measurable adverse health effects would result at any chosen residential location, using the most sensitive receptor chosen (a female child).
 - -Marginal Acrolein exceedance.

Results: <u>Long-Term Impacts</u>, Airport Emissions VOC/PAH

- Phase 1 predicted Cancer Risks and Exposure Ratios for VOC and PAH Concentrations
 - None of the short-term or long-term air concentrations of <u>VOCs</u> or <u>PAHs</u> predicted for airport sources exceeded health (toxicity) criteria
 - All Exposure Ratios (ERs) for non-cancer endpoints were less than a value of one (1) at the location of maximum off-site concentration and seven off-site receptors
 - All the Cancer Risk Levels (CRLs) were less than one-in-a-million at the location of maximum off-site concentration and the seven off-site receptors.

Monitoring Results

Monitoring 2005-2006

- 14 months of data
- Criteria Pollutants
- 52 Canister Samples tested for 165
 Separate Organic Compounds Sampled every 6 days

Monitoring Results

- Airport observations Correlate well with Local Air Quality Monitoring Station
- Criteria Pollutants within Guidelines with the Exception of Ozone
- Apron Site was the Dirtiest
- All Organic Compounds (checked) with the Exception of Acetaldehyde were Less than those used in the Previous Modeling Results (HHRA)

Health and Safety Monitoring

Baggage Stripping Road-High CO Levels

Summary of Air Sampling Data T1 for Area and Personal

Location	V	OCs (ppm))		CO (ppm)		N	NO ₂ (ppm)		Particulates (mg/m ³)		g/m ³)
	Min.	Max.	Avg.	Min.	Max	Avg.	Min.	Max	Avg.	Min.	Max.	Avg.
CF1	0.0	0.0	0.0	0.0	4	0.14	0.0	0.3	0.0	1	-	-
CF2	0.0	0.0	0.0	0.0	9	0.21	0.0	0.1	0.0	-	-	-
CF3A	0.0	0.0	0.0	0.0	29	1.19	0.0	0.6	0.05	-	-	-
CF6	-	0.5	0.2	0.0	14	0.74	0.0	0.5	0.0	-	-	-
CF7	0.0	13.2	0.7	0.0	45	1.5	0.0	0.4	0.04	-	-	-
CF9	0.0	0.0	0.0	0.0	22	0.97	0.0	0.0	0.0	-	-	-
OSS-1	0.0	0.0	0.0	0.0	13	0.94	0.0	0.2	0.0	-	-	-
OSS-2	-	0.0	0.0	0.0	11	0.54	0.0	0.2	0.0	-	-	-
OSS1/OSS4	0.0	0.0	0.0	0.0	22	0.88	0.0	0.2	0.0	-	-	-
BC 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	-	-	-
Rudy	-	-	-	0.0	38.0	0.0	-	-	-	0.003	0.929	0.078
Nelson	-	-	-	0.0	37	0.0	-	-	-	0.005	0.382	0.035
Mark	-	-	-	0.0	5.0	0.0	-	-	-	0.000	3.734	0.091
Justin	-	-	-	0.0	34.0	0.0	-	-	-	0.000	36.89	0.162
Andrew	-	-	-	0.0	663	1.12	-	-	-	0.006	0.615	0.055
Sandra	-	-	-	0.0	17.3	1.47	-	-	-	0.006	0.351	0.03

Problem Area – Terminal Apron GTAA

Pollutants of Concern:

- CO
- Acetaldehyde is 4X Modeled

Aldehydes & Ketones

Perth/Ruskin

Carbonyl	Jet Emission: Range % Idle-Taxi	Diesel: Ranking			
Formaldehyde	37-70%	1 (LD =45%, HD = 26%)	Combined		
Acetaldehyde	9-41%	2	LD = 63-75% HD = 50%		
Acetone	4-45%	3			
Acrolein	3.7-16%	11			
Propanal	1.4-7.5%	13			
Crotonaldehyde	0.7-5.1%	4			

Airside Emission Sources

- Aircraft
- GSE
 - Luggage
 - Cargo
 - Fuel
 - De-icing
 - Water
 - Heating/Cooling
 - Electric Power
- Airfield Maintenance

Conclusion

GREATER TORONTO AIRPORTS AUTHORITY

Thank You

Conditioned Clean Air

Replacing APU with power and A/C at the gate has saved Air Canada \$300K in fuel costs at YUL

It would save environment + \$1 million at YYZ!

Co-generation Plant

10 Years of Emission Reductions

- Airside
- Efficiency
- Private Vehicles
- Ground Side Vehicles
- Fixed Sources