

from Ethanol

Laurel Harmon

VP Government Relations, LanzaTech

LanzaTech Sustainable Aviation Fuel: ATJ-SPK from Ethanol

LABORATORY

Ethanol

Ethylene

C₄- C₂₄ Olefins

Paraffins and IsoParaffins

Development and Scale Up Timeline

2010-2012: Initial Research and Proof of Concept

•2010: PNNL •2011: DARPA •2011: FAA

•2012: DOE

2011+:

Collaboration with Industry Leaders

- Virgin Atlantic
- •HSBC
- Boeing
- •RSB

2014-2017: Scale up and Fuel Production

- •Freedom Pines pilot facility
- •4,000 gallons of jet produced
- DOE demo funding

2016-2018: ASTM

- LanzaTech Research
 Report on Ethanol Based
 ATJ-SPK Submitted
 September 2016
- ASTM SAF Standard including Ethanol as Feedstock for Jet Published April 2018
- Based on LanzaTech data

2018+: Flight Demos and Demonstration Scale Fuel Production

- First Commercial flight on October 2, 2018
- •DOE Demonstration Plant

ICAO STOCKTAKING SEMINAR TOWARD THE 2050 VISION FOR SUSTAINABLE AVIATION FUELS

- 4,000 gallons Jet
- **600** gallons Diesel

Fuel Property	Jet A Spec	LanzaTech ATJ-SPK	50/50% v with Jet A
Freeze Point, °C	-40 max	-61	-54
Energy Density, MJ/kg	42.8 min	44.4	43.8
Thermal Stability	Baseline	Excellent	Excellent
Viscosity @ -40 °C mm ² /sec	12 max	7.0	9.3
Hydrogen %	13.4 min	15.1	14.5
Aromatics %	8 min, 25 max	Nil	8.8
Sulfur, total mass %	0.30 max	<0.001	0.02

LanzaJet: Taking Off

April 1, 2018 D7566 ATJ SPK Annex A5

✓ Ethanol feedstock

✓ Final blend ratio to max 50 %

National Research Council Canada

Conseil national de recherches Canada

ENVIRONMENT

ICAO STOCKTAKING SEMINAR TOWARD THE 2050 VISION FOR SUSTAINABLE AVIATION FUELS

Path to Economic Volumes

2015 Lab Scale

2016
Pilot Scale

Energy Efficiency & Renewable Energy

2020 10M gpy

2022 30M gpy x3

Industrial Off Gas Biomass, MSW Syngas

> 6 Million Gallons Ethanol Produced Since Start Up

ICAO ENVIRONMENT

ICAO STOCKTAKING SEMINAR TOWARD THE 2050 VISION FOR SUSTAINABLE AVIATION FUELS

China 48k MTA

Belgium 62k MTA

Commercialization: Industrial Off Gases

South Africa 52k MTA

India
34k MTA

Global ATJ-SPK Potential from Wastes and Residues Alone

Municipal Solid Waste: ~18 B gpy

ATJ-SPK

Residual Biomass: ~360 B gpy

Steel Mill Offgas: ~30 B gpy

~18 B gpy

Refinery Offgas: ~2 B gpy

Ferro-Alloy: ~0.5 B gpy

Building A Sustainable Aviation Fuel (SAF) Sector

- > Technical Support
 - Continued (and expanded) support for stringent technical approval process
- Supply Chain Support
 - Support for development, collection, transportation, and storage of sustainable feedstocks
 - Infrastructure for SAF transportation, storage, blending, and distribution
- > Technology and Project Support
 - R&D grants for technology and feedstock development, sustainability and systems analysis, ...
 - Grants and low-cost finance to offset capital costs of scale up (piloting and demonstration)
 - Assistance for project development, feasibility studies, environmental approvals, sustainability assessment
 - Guaranteed or low-cost debt to reduce capital risk of first commercial plants
- Policy Support
 - Stable alternative fuel policies that drive SAF demand
 - Most SAF technologies can produce gasoline and/or diesel as well as jet (and marine)
 - Mandates and incentives that at least level the playing field for SAF

ICAO ENVIRONMENT

ICAO STOCKTAKING SEMINAR TOWARD THE 2050 VISION FOR SUSTAINABLE AVIATION FUELS

