

DRONE ENABLE ICAO's Unmanned Aircraft Systems Industry Symposium Montreal, 22 – 23 September 2017

Potential spectrum and telecom technologies for small UAS

Nikolai Vassiliev
Chief, Terrestrial Services Department
International Telecommunication Union

International Telecommunication Union

- Established in 1865, based in Geneva, 12 regional and area offices, around 750 staff
- > staff from 80 countries, 6 official languages
- > 3 ITU Sectors:
 - > ITU-R Radiocommunications spectrum, standards for wireless communications
 - > ITU-T Standardization standards for core (wired) networks
 - ➤ ITU-D Development assistance to developing countries

111 years of managing spectrum and 90 years of standardization

90th Anniversary CCIR/ITU-R Study Groups (1927-2017)

2017

1906

From the first International Radiotelegraph Convention, **1906** to the Radio Regulations, **2016**

RR follow and anticipate technological advancements

Radio Regulations (RR)

- > The basic ITU document on spectrum is Radio Regulations
- > RR is intergovernmental treaty. Ratified by governments -> mandatory
- Allocates frequency blocks to radio services, including aeronautical
- > RR deal with radio use having international implications. Main goals:
 - > interference free operation of stations (critical for UAS C2 links)
 - harmonization of spectrum (e.g. global aeronautical bands, RPAS bands)
- RR updated every 3-4 years at World Radiocommunication Conferences - WRCs

Frequencies for aviation at world radiocommunication conferences

- > WARC 1927, Washington -> first spectrum to aeronautical service in 315 350 kHz
- > WARCs in 1938, 1947/59/63/64/66, etc. -spectrum for new aviation technologies
- >WRC-12 -> spectrum for terrestrial component of RPAS in 5030 5091 MHz
- ➤ WRC-15:
 - 8 frequency bands for satellite component of RPAS in K_u and K_a ranges
 - Spectrum for Global Flight Tracking and Wireless Avionic Intra Communications (satellite reception of ADS-B signals)

Delegates at the 1947 Atlantic City Radio Conference

Delegates at WRC-15

Categories of potential spectrum for UAS

90th Anniversary

CCIR/ITU-R Study Groups (1927-2017)

Aeronautical safety bands

- Exclusive (mostly)
- Protected from interference
- Managed by ICAO/CAA
- Limited capacity and intensive usage
- E.g. 5030-5091 MHz

Licensed bands (cellular networks, etc.)

- Shared with other users
- Sufficient capacity
- Control of interference and Quality of service (QoS)
- E.g. 2 110-2 200 MHz

Unlicensed bands (Wi-Fi, SRD)

- Subject to general license (power limits)
- Available for short-range communications
- Good capacity and freedom to use
- QoS and protection from interference not ensured
- E.g. 2.4 GHz, 5.8 GHz

Feasibility of aviation safety bands for UAS

(example of some bands)

Range	Frequency band	Current aviation usage	Feasibility for UAs
HF	2.85 – 22.0 MHz	Voice and data	No Congested, subject to careful, formal planning
VHF	117 – 137 MHz	Voice and data	In principle No congested, subject to careful, formal planning
L-band	960 – 1164 MHz	Air-ground coms, DME, UAT, ADS-B	In principle No Congested
C-band	5030- 5091 MHz	MLS, RPAS C2	Could be studied Mainly for RPAS, but 5030 – 5091 MHz under study for small UAS in some countries

Unlicensed frequency bands

- Two main groups of unlicensed bands, designated for:
 - Industrial, Scientific and Medical (ISM) applications. These bands are listed in the ITU Radio Regulations, e.g. 2.4 GHz, 5.8 GHz;
 - Short-Range Devices. Designated nationally/regionally/ by ITU
- Main disadvantages : no interference protection, QoS are not ensured
 - Mainly for recreational UAS usage within line-of-site.
 - Possible solution for UAS identification and tracking (UAS radio tags)
 - May be not suitable for BLOS communications and professional UAS
- ➤ Usage of unlicensed bands for UAS varies by country. Examples: 27 MHz, 34 35 MHz, 40 MHz, 2.4 GHz, 5.8 GHz*

^{*} Source: ECC Report 268

Bands for cellular mobile systems (IMT)

- ➤ ITU allocates spectrum for IMT, harmonizes the bands and develops high-level IMT standards
- ➤ IMT bands have huge capacity: 1 884 MHz spectrum
- ➤ Global harmonization: totally 65% harmonized; some key bands reach almost 100% harmonization
- ➤ IMT parameters could meet UAs requirements for C2 and payload, e.g. IMT-2020 (5G):
 - User data rates: 100 Mbit/s (downlink) 50 Mbit/s uplink
 - Latency: 1 5 ms
 - Mobility: 120 to 500 km/h
 - Connection density: 1 million devices per km²

Other IMT advantages

- The bands are sufficiently large to accommodate both C2 and payload important due to carriage limitations of small UAS
- Ubiquitous coverage of cellular networks enables BLOS operations
- Potential for tracking UAS over mobile networks, similarly to mobile phones
- IMT bands are harmonized, which assists in trans-border operations, facilitate UMT unification
- IMT technologies will evolve and integrate into future heterogeneous networks (cellular + Wi-Fi + WiMAX + fixed ...) -> better coverage, dynamic data traffic management

Limitations of current cellular networks

- Uncovered areas
 - Current 3G/4G coverage is from 40 to 100 % of population *.
 Example: host country 99.3%, but 0.7% of population may live at large territories having no coverage
- Network topology: reduced cell coverage towards the sky
 - Base stations serve the land, not the sky -> typical base station antennas look horizontally or to the ground
- QoS in some cases may not be sufficient to meet UAS safety requirements
 - Current mobile-cellular dropped call ratio vary from 0.01 to 3.35 % *

Ecosystem of future 5G

- > 5G is wider than just mobile industry. It will accommodate verticals (industry sectors)
- > Future 5G networks will be capable to adapt to a specific application

Automotive

Railways

Media

Drones

Industrial and home automation

Public safety

3GPP (3rd Generation Partnership Project) and telecom industry consider UAS as a potential 5G vertical

Summary

- Possible approach: UAS categories -> requirements for operation range and channel QoS -> choice of spectrum and technologies to meet the requirements
- Spectrum for UAS C2
 - Licensed spectrum or dedicated bands for professional UAS and BLOS operations
 - Unlicensed bands for recreational UAS operated at LOS
- Candidate telecommunication technologies probably no new, dedicated networks, rather use of existing ones and adapting them:
 - IMT and satellite networks for BLOS operations
 - WiFi and SRD for LOS operations
 - Possibly some aeronautical systems for LOS/BLOS

International cooperation

- Studies on spectrum and technologies for UAS C2/payload/tracking are taking place both in ICAO and outside the aviation community:
 - Regional telecommunication organizations, e.g. CEPT
 - 3GPP and main telecommunication industry players accommodation of UAS under 5G
 - ITU-T Study Group 20 dealing with IoT identification of UAV as a digital object
- Possible assistance of ITU:
 - Adapting regulations to allow UAVs usage in IMT, if chosen
 - Global harmonization of spectrum for small UAS, if decided

Thank you!