

ICAO SEMINAR ON ALTERNATIVE FUELS 2017 ICAO Headquarters, Montréal, 8-9 February 2017

Power-to-Liquids: A new pathway to renewable iet fuel

Arne Roth, Patrick Schmidt

Bauhaus Luftfahrt e.V., Ludwig-Bölkow-Systemtechnik GmbH

Background study: PtL for Aviation

- Commissioned by German Environment Agency (UBA)
- Joint expertise of LBST and Bauhaus Luftfahrt e.V.
- Download:
 - http://bit.ly/2cowOyf
 - https://www.umweltbundesamt.de/en/publikationen/ power-to-liquids-potentials-perspectives-for-the

Expertise sponsored by the German Environment Agency

Power-to-Liquids (PtL): The pathway

Biofuels: Intrinsic efficiency limitation

- Photosynthesis: An inefficient way of harnessing solar energy for fuel production
- Less than 1% overall efficiency

Source: Wolfgang Junge, Efficiency Potentials of Photosynthetic Fuels, Bauhaus Luftfahrt Symposium "Future of Aviation", Munich, 2013.

PtL: An efficient alternative to photosynthetic energy conversion

- PV: 15%
- PtL conversion: 60%
 - high-temperature electrolysis
 - concentrated CO₂ source
 - reverse water gas shift
 - Fischer-Tropsch synthesis

=>About 9% solar-to-fuel energy efficiency (6-7% for CO₂ from air)

Source: https://commons.wikimedia.org/wiki/File:Solar Panels.jpg

Land demand

- High efficiency of solar energy conversion translates into low land demand
- Harvesting of solar energy independent of arable land

Water demand

- Water is needed as feedstock (for hydrogen production)
- Extremely efficient use of water via PtL (compared to biofuels)

PtL water demand compared to selected biofuels (volume representation, PtL water demand ~ 1.4 LH₂O/Ljetfuel)

GHG emissions (WtW) in g_{CO2eq}/MJ

Favorable GHG
 balance for PtL using
 renewable electricity,
 CO₂ and water
 relative to
 conventional jet fuel
 and many biogenic
 alternatives

Jet fuel pathway	GHG emissions without land-use change	GHG emissions including direct land-use change
Crude oil (reference)	87.5	_
Crude oil (ultra-low sulfur)	89.1	_
Oil sand (e.g. Canada)	103.4	_
Oil shale (in situ)	121.5	_
Natural gas (GtL)	101.0	_
Coal (CtL)	194.8	_
Switchgrass (BtL)	17.7	-2.0*
Soybean oil (HEFA)	37	97.8-564.2
Palm oil (HEFA)	30.1	39.8-698.0
Rapeseed oil (HEFA)	54.9	97.9
Jatropha oil (HEFA)	39.4	-
Algae oil (HEFA)	50.7	-
PtL (wind/PV in Germany)	~1	-
	11-28**	-

Source: This study (LBST & BHL) for PtL fuels; data for all other listed pathways from (Stratton 2010)

* Negative value because soil carbon from former vegetation lower compared to soil carbon for switchgrass

**Including construction of power plants and production facility (today)

Cost of production

- Fuel costs represent most serious challenge
- Improvements of renewable electricity production and of conversion process to be expected

Jet fuel costs projected for future PtL plants in 2050 (jet fuel reference price: 42–95 US\$/bbl; renewable electricity costs: 40€/MWh.; equivalent full-load period: 3750 h.e./yr)

Source: LBST

Conclusions

- PtL: A scalable and sustainable pathway to drop-in fuels
 - Low GHG and water footprint
 - High production potentials and areaspecific yield
 - Highest yields on non-arable land
- High costs are greatest challenge
- Sustainable sources of electricity and CO₂ required

Further steps

- ⇒ Investigate PtL on equal terms alongside bio-jet fuel.
- ⇒ Include PtL in CAEP's technology roadmap and R&D agenda.
- ⇒ Support PtL development and industrial projects.
- ⇒ Establish sustainability safeguards (accounting for sources of electricity and CO₂).

Thank you

Bauhaus Luftfahrt e.V.

Willy-Messerschmitt-Str. 1

82024 Taufkirchen, Germany

P: +49 (0)89 307 4849-46

E: arne.roth@bauhaus-luftfahrt.net

Patrick Schmidt

Ludwig-Bölkow-Systemtechnik GmbH

Daimlerstr. 15

85521 Ottobrunn, Germany

P: +49 (0)89 608 110-36

E: Patrick.Schmidt@lbst.de