

How will climate change

affect air travel?

Prof Paul D. Williams

University of Reading, UK

Climate change impacts on aviation

Shifting wind patterns modify optimal flight routes and fuel consumption

Warmer air imposes take-off weight restrictions

More extreme weather causes disruptions and delays

Rising sea levels and storm surges threaten coastal airports

Puempel & Williams (2016) ICAO Environmental Report

The acceleration of the jet stream

Jet-stream
changes driven by
CO₂ in IPCC
climate simulations

Stronger eastward winds & windshears at flight cruising altitudes

$$\frac{\partial u}{\partial z} \propto -\frac{\partial T}{\partial y}$$

Delcambre et al. (2013)

Changing LHR↔JFK flight times

Likelihood of taking under 5 h 20 min more than doubles from 3.5% to 8.1%

Likelihood of taking over 7 h 00 min nearly doubles from 8.6% to 15.3%

Williams (2016)

Changing LHR↔JFK flight times

- Have these changes already begun?
 - The North Atlantic jet stream wind speeds reached 250 mph on 8-12 January 2015
 - An eastbound JFK→LHR crossing took only 5 h 16 min, which is the current non-Concorde record
 - Westbound LHR→JFK crossings took so long that two flights had to make unscheduled refuelling stops in Maine
- Extrapolation to all transatlantic traffic (600 crossings per day) suggests that aircraft will collectively be:
 - airborne for an extra 2,000 hours each year
 - burning an extra 7.2 million gallons of jet fuel at a cost of \$22 million
 - emitting an extra 70 million kg of CO₂ into the atmosphere, equating to 7,100 British homes

Turbulence

Aircraft encounter moderate turbulence (>0.5g) 65,000 times and severe turbulence (>1.0g) 5,500 times annually in the USA. These encounters:

- cause about 40 fatalities and 100s of serious injuries
- cause structural damage to planes
- cause flight diversions and delays
- cost airlines \$150m—\$500m

Statistics from:

www.ral.ucar.edu/aap/themes/turbulence.php

Ralph et al. (1997)

Turbulence injury trends

Number of serious injuries (including fatalities) caused by turbulence, per million flight departures (US carriers)

FAA (2006)

Is CAT increasing?

PRE-INDUSTRIAL

DOUBLED CO2

$$\mathbf{TI1} = \left| \frac{\partial \mathbf{u}}{\partial z} \right| \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2}$$

Is CAT increasing?

Summary

- A basket of CAT measures diagnosed from climate simulations is significantly modified if the CO₂ is increased
- At cruising altitudes on transatlantic flights in winter, the diagnostics show a 59% / 94% / 149% increase in the prevalence of light/moderate/severe CAT, with similar results on other flight routes and in other seasons
- We conclude that, all other things being equal, climate change will lead to bumpier flights later this century
- Flight paths may become more convoluted to avoid stronger and more frequent patches of turbulence, in which case journey times will lengthen and jet fuel consumption will increase

© DrPaulDWilliams

www.met.reading.ac.uk/~williams

p.d.williams@reading.ac.uk