

DOCUMENT INSPECTION CAPABILITIES AT THE BORDER

Strengths and Weaknesses of Humans and Machines

ICAO Regional Seminar on MRTDs and Traveller Identification Management Madrid, 24-27 June 2014

Monica Gariup Senior Research Officer

2014-06-09

Contents

- What is Frontex?
- What is the Document Challenge II?
 - Basic Facts
 - Rationale
 - Objectives
 - Methodology and Approach
- Major Findings

FRONTEX

The European Agency for the Management of the **Operational Cooperation** at the External Borders of the Member States of the EU (EU Council Regulation (EC) No 2007/2004 of 26 October 2004)

- Mission: "Intelligence driven operational cooperation at EU level to strengthen security at external borders"
- Tasks:
 - carry out risk analyses;
 - coordinate operational cooperation;
 - o joint operations
 - o support with technical and operational assistance
 - assist EU Member States with training their Border Guards (Common Core Curriculum);
 - follow up and contribute to research relevant for the control and surveillance of external borders.

DOCUMENT CHALLENGE II Basic Facts

- Simulation of Document Inspection in the First line (Lisbon SEF Headquarters: 19 September - 1 October 2013; Joint Action Lusitania)
- Evaluation of performance and usability
- Participants (Humans and Machines) tasked to correctly classify genuine and false documents:
 - 42 Officers
 - 7 document inspections systems
 - § 3 different test-sets (a total of 215 documents)
 - 3 scenarios:
 - A) Machine Only,
 - B) Human Only (with/without time constraint),
 - C) Human with Machine

Document Inspection System	
AU10TIX	
Morpho	
Regula	
ARH	
Keesing	
Bundesdruckerei GmbH	
Foster&Freeman	

In cooperation with:

PT SEF, UK National Document Fraud Unit, NL Royal Marechaussee, DE Forensic Science Institute (Bundeskriminalamt), Frontex Joint Operations Unit (Air Border Sector)

DOCUMENT CHALLENGE II: Rationale

- Lack of reliable data concerning the security performance (accuracy, errors etc.) of document inspection systems and border control officers:
 - How do we know how good we are (detection dilemma)?
 - How do we know how bad we are and what type of <u>capacity building</u> is needed? (Training? What type?; New Equipment? Upgrade?)
- Lack of standard methodology to assess operational performance of document inspection capacities in the first line (... and beyond)
- Lack of standards on performance of document inspection systems (+certification etc. etc., BSI but...)

DOCUMENT CHALLENGE II: Objectives

- Contribute to the development of a usable metric to assess operational performance of document inspection capabilities (!)
- Understand current performance levels and vulnerabilities (how many false documents pass undetected - falsely accepted as genuine - and why)
- Recommend solutions for technical vulnerabilities to participating <u>DIS providers</u> in order to contribute to the overall fight against document fraud
- Recommend solutions for human/operational vulnerabilities to <u>Frontex and MS</u> in order to strengthen the security at the first line of control

Main Findings

A. Machine Only Use Case

- Human Factor always plays a role
 - Presentation of document
 - Interpretation of result on front-end application (interface)
- Inconsistency in results
 - Hypotheses:
 - Subjective interpretation of Machine
 Decision (Due to front end App?) <u>Human</u>
 <u>Factor</u>
 - Variability in Machine results when scanning same doc several times by the same user -Machine Inconsistency (Technical)

Analysis of Front-End App and language used by Machine (USABILITY)

Analysis of logs to check for machine inconsistency and/or presentation issues (RELIABILITY)

A. Machine Only Use Case:

- No clear best (it depends on the objective)
- Trade-off security (Negative Effectiveness) and Facilitation (Positive Effectiveness).
- Balance (accuracy) at the cost of slightly higher errors in both (FPR/FNR aka false acceptance/false rejection)

B. Human Only Use Case

- Time Restricted: 60 seconds to take decision on 4 docs at a time
- Some officers with very high accuracy (>90%) and very low errors (FPR/FNR)
 Wizards?
- Big variations across groups (high standard deviation): issue of subjectivity/consistency
- What affects human performance?

C. Human-Machine Use Case:

Test:

- Machine gives result and Tester records it
- Tester records whether he/she agrees
- Tester records final result
- Accuracy increases when humans disregard machine results and take their own decisions (except than for non-experienced)
- Humans tend to win against the machine (correct answer) when they don't accept (trust) the machine result (except for non-experienced)

Human-Machine WIN-LOSE in case of disagreement

H wins tot
M wins tot

Comparison Human-Machine Performance

Study of difficult and easy documents to detect

Issue of Function Allocation

Humans are Better at	Machines are Better at
Inspecting Physical integrity of booklet	Field comparison (including chip/viz-mrz)
Inspecting Substrate features	Mathematical checks (check digit)
Dealing with exceptions (especially if object of alerts etc.)	Electronic authentication
Dealing with operational praxis (ex. Stamps/visa etc.)	
tbc	tbc

General observations related to weaknesses identified for

Machine Authentication

(based on classification outputs)

- Difficulty in verifying certain substrate (watermark etc) and optical features (translucent, IPI, laminates and glare, total UV luminiscence etc.)
- Different illumination intensity, exposure, angles (UV, IR, VIS) affect correct identification and especially false document detection. Only 2 machines used glare compensation.
- Difficulty with dealing with ICAO non-compliant documents, production errors and exceptions
- Difficulty with identification of some genuine documents (reference database?)
- Difficulty in identifying wrong printing techniques
- Field comparison: not all compare portrait and photo on chip
- Check digits: not all calculate the optional digit
- ID cards: not all check both sides
- Different strengths of the pattern recognition algorithm used

Overall Comparison of Accuracy Test121(96) Machines vs Humans by type of experience

Thank you for your attention!

