

WAM/ADS-B Composite Surveillance

Presented by: Aleš Košťál

Heritage of proven innovation

AGENDA

ERA – who we are

ATC Surveillance Overview

WAM/ADS-B Composite Surveillance

WAM/ADS-B Deployed Systems

About ERA

The **pioneer** and **leading supplier** of NextGen surveillance and flight tracking solutions for the air traffic management, military, security and airport operations markets

50 years of TRADITION and EXPERIENCES in MLAT

More than 100 installations worldwide

Solutions for ATC and MILITARY

46 countries in **5** continents

Continuous development

Own strong R&D centre

ATC Surveillance Technologies Overview

ATC Surveillance Technologies

Non-COOPERATIVE

INDEPENDENT

Aircraft position is determined by measurement without cooperation with aircraft

COOPERATIVE

INDEPENDENT

Aircraft position and additional information is determined on bases of aircraft transmission

COOPERATIVE

DEPENDENT

Aircraft position is determined on-board and distributed with additional information to land surveillance components

Monostatic Sensors

Primary Surveillance Radar (PSR) Secondary Surveillance Radar (SSR); Mode A/C, S

Multistatic Sensors

Automatic Dependent Surveillance Broadcast

Composite System

Wide Area Multilateration

MultiLATeration (MLAT)

Automatic Dependent Surveillance Broadcast (ADS-B)

A Bit of Hostory

Development of Surveillance Technologies

Drivers

- Global and local strategies (ICAO ASBU, SESAR, NEXT Gen, Carats,...)
- Interoperability
- Civil-Military coordination
- Functional Airspace Blocks (FABs)
- Small targets GA and UAVs
- Investments and Operational cost
- Efficiency
- Frequency Spectrum
- New Technologies

Airborne surveillance by ground

ADS-B and Multilateration

Decisions for ADS-B surveillance is progressing however ADS-B deployments are still well ahead of aircraft equipage

Multilateration can provide migration path and complement ADS-B

Composite ADS-B/WAM

- Pragmatic, flexible ADS-B/WAM deployment
- En-route, on approach, on the ground
- High integrity, validation

ADS-B

- Long Range (Cost effective for large areas)
- ADD data without interrogation
- Ideal for NRA also possible as another layer in RAD
- Aicraft must be properly equipped

Multilateration

- No new avionics required
- Good accuracy and high update rate
- Independent Information
- Layer in NRA and/or RAD

PROS

- 1 COST EFFECTIVE deployment
- En-route, Approach, On the Ground
- Cross checking function
- Increased Safety
- Possible 3 layers (output channels)
 - Independent WAM/MLAT
 - Independent ADS-B
 - Combined (optional)

COMPOSITE SURVEILLANCE

Standartization process - EUROCAE WG51 SG4

- ED-142 (WAM) & ED-129 (ADS-B) undergoing revision
- Recognising common architecture
- Moving beyond NRA ("non-radar environment") limitations
- Recognizing ED-163 ADS-B RAD and ED-102A (DO-260B)
- EUROCONTROL GEN-SUR (Generic Surveillance)

ED-XXX ADS-B & WAM Composite Surveillance

- Assumed new EUROCAE standard
- Minimum requirements (and guidance) for using combined ADS-B & WAM

ED-129A expected to support distributed ADS-B

MLAT/WAM – Proven and Widely Deployed Solution

AIRPORT

- AirportSurfaceSurveillance
- Up to 5 NM
- A-SMGCS
- VehicleTracking

TMA

- Terminal
 Manoeuvring
 Surveillance
- Up to 80 NM
- Terminal area

EN-ROUTE

- En-routeSurveillance
- Up to 250 NM
- WAM, HMU

TMA

- Terminal
 Manoeuvring
 Surveillance
- Up to 80 NM
- Terminal area
- PrecisionApproach

AIRPORT

- AirportSurfaceSurveillance
- Up to 5 NM
- A-SMGCS
- VehicleTracking

Main reasons for WAM/ADS-B

- Replacement of SSR or gap filling while keeping the same or better performance and operational needs
- ADS-B has a longer adoption period but MLAT is ready today and combined systems provides ideal migration to ADS-B and validation of ADS-B.
- The same technology meets surface, approach and wide area requirements.
- Enhanced approach operations such as PRM

Number of ANSP has deployed WAM (ADS-B)

WAM/ADS-B Romania

• Requirements

- Surveillance coverage for Cluj TMA area of 120 x 100 NM over three internationals airports
- ED-142 Performance and other international standards
- ADS-B output
- The system uses national GSM providers as communication infrastructure

System Composition

- 17 Ground Stations (13 Receiving Only and 4 Receiving/Transmitting)
- 1 Central Processing Station in Bucharest

Status

- Fully operational since December 2011

Extension and Future Plans

- Ongoing extension program for coverage of lower altitudes around Cluj-Napoca International Airport
- Additional 6 Ground Stations

Installation Examples

WAM/ADS-B Queenstown

- WAM/ADS-B Queenstown
 - End User: AIRWAYS New Zealand
 - ED-142 Performance
- Requirements and challenges
 - Queenstown surrounded by extreme terrain (high mountains, deep valleys)
 - Provide TMA and approach surveillance for Queenstown airport starting from 500ft AGL
 - Display system at Queenstown Control Centre.
 - Fused into old Lockheed Martin Skyline Flight data processor (ASTERIX 1 used)
 - Extreme weather and terrain conditions for installation

era era

WAM/ADS-B Queenstown

- System composition
 - 15 MLAT Ground Stations
 - MW links used for data communication
 - Ongoing extension program 7 additional Ground Stations

SAT results visualization

Installation Examples

WAM/ADS-B Fiji

NextGen ATM System replacement

- ADS-B/MLAT Surveillance data for first time
- New Adacel fusion and display
- Airspace redesign and safety cases
- New charging and billing system
- Avionics equipage and mandate

11 ADS-B/MLAT stations

- ADS-B coverage up to 500nm from Nadi
- Multilateration core for higher altitude
- Multilateration into main Nadi airport

Operational early 2010

CL3

WAM Newcastle

WAM Newcastle

- End User: NIA
- Contracted 2011

Requirements

- Coverage over TMA area (minimum 50NM)
- TMA, approach and surface (vehicles) surveillance
- Data fused to existing INDRA system
- Survive harsh climatic conditions

System Composition

- 8 Ground Stations
- Fully Operational from 09/2013
 - Extensive rigorous Safety Case approved by UK CAA

Installation Examples

Development of Surveillance Technologie

Drivers

- Global and local strategies (ICAO ASBU, SESAR, NEXT Gen, Carats,...)
- Interoperability
- Civil-Military coordination
- Functional Airspace Blocks (FABs)
- Small targets GA and UAVs
- Investments and Operational cost
- Efficiency
- Frequency Spectrum
- New Technologies

Airborne surveillance by ground

Thank you for your attention

