B0 to B1

Saulo Silva

Regional and National Air Navigation Performance Framework/Aviation System Block Upgrade (ASBU) Implementation Workshop for the NAM/CAR Regions (Mexico City, Mexico, 22 – 26 August 2016)

1111111111

Objective

To show Block 1 modules as an operational evolution from Block 0 modules.

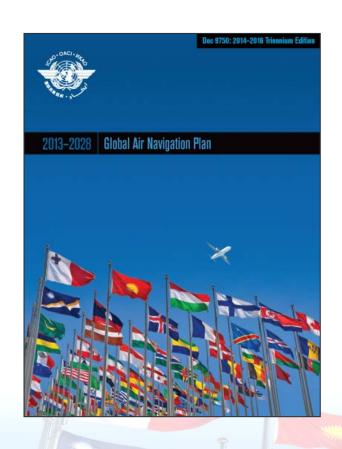
26 August 2016 2

Flight plan

- Vision

- ASBUs

- Evolution.


VISION

To achieve an interoperable global air traffic management system for all users during all phases of flight, that

- meets agreed levels of safety;
- provides for optimum economic operations;
- is environmentally sustainable; and
- meets national security requirements.

Establish Principles and Priorities

GANP Policy Principles

Aviation Safety is the Highest Priority

Cost Benefit and Financial issues

Aviation System Block Upgrades (ASBUs), Modules, Elements and Roadmaps

AIRPORT OPERATIONS

- APTA Optimized Airport Accessibility
- WAKE Wake Vortex Separation
- RSEQ Runway Sequencing

- **SURF** Surface Operations
- ACDM Airport Collaborative Decision Making
- RATS Remotely Operated Aerodrome Control

GLOBALLY INTEROPERABLE SYSTEMS AND DATA (SWIM)

- FICE Flight and Flow Information for a Collaborative Environment
- DATM Integration of Digital ATM Information
- AMET Integration of Meteorological information
- SWIM System Wide Information Management

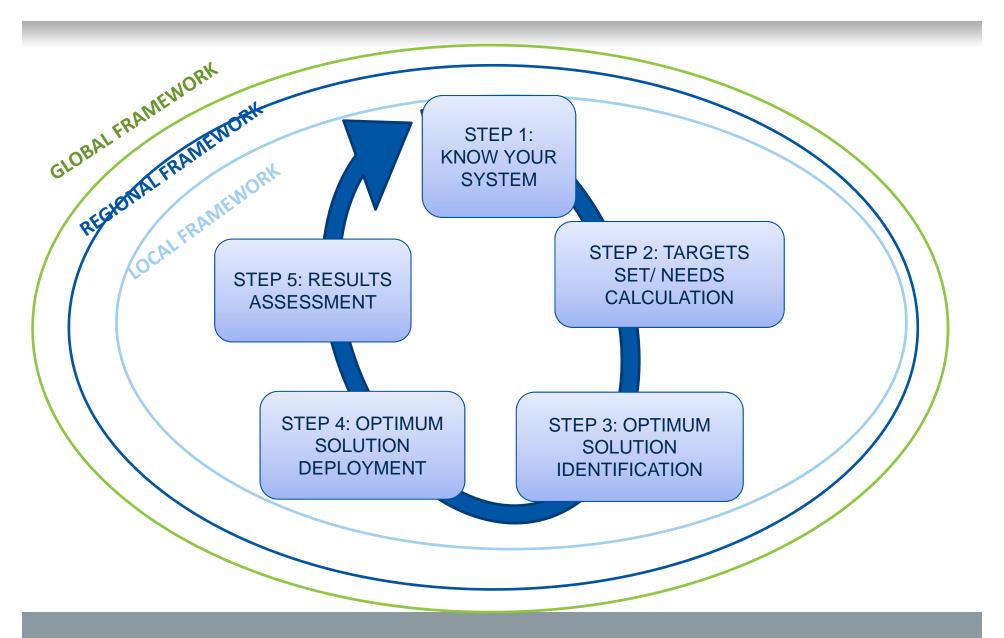
OPTIMUM CAPACITY AND FLEXIBLE FLIGHTS (GLOBAL COLLABORATIVE ATM)

- FRTO Free Routing
- NOPS Network Operational Planning
- ASUR Initial Capability for Ground Surveillance
- ASEP Airborne Separation
- OPFL Optimum Flight Levels

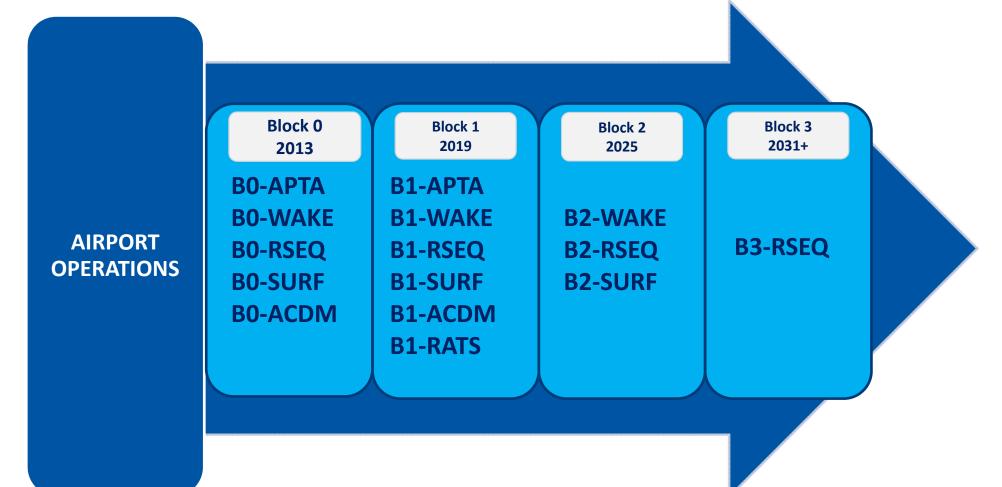
- ACAS Airborne Collision Avoidance Systems
- **SNET** Safety Nets

EFFICIENT FLIGHT PATHS (TROUGH TRAJECTORY-BASED OPERATIONS)

- CDO Continuous Descent Operations
- **TBO** Trajectory-based Operations
- CCO Continuous Climb Operations
- RPAS Integration of Remotely Piloted Aircraft


ICAO UNITING AVIATION ASBUS FRAMEWORK

	Block 0 2013	Block 1 2019	Block 2 2025	Block 3 2031+	
AIRPORT OPERATIONS	BO-APTA	B1-APTA			
	B0-WAKE	B1-WAKE	B2-WAKE		
	B0-RSEQ	B1-RSEQ	B2-RSEQ	B3-RSEQ	
	B0-SURF	B1-SURF	B2-SURF		
	B0-ACDM	B1-ACDM			/
		B1-RATS			
GLOBALLY	B0-FICE	B1-FICE	B2-FICE	B3-FICE	
INTEROPERABLE	B0-DATM	B1-DATM			
SYSTEMS AND	B0-AMET	B1-AMET		B3-AMET	20 ED 10/15
DATA (SWIM)		B1-SWIM	B2-SWIM		
, i j					
OPTIMUM	B0-FRTO	B1-FRTO			
CAPACITY AND	B0-NOPS	B1-NOPS	B2-NOPS	B3-NOPS	
FLEXIBLE	B0-ASUR				
FLIGHTS	B0-ASEP	B1-ASEP	B2-ASEP		
(GLOBAL	B0-OPFL				
COLLABORATIVE	B0-ACAS		B2-ACAS		
ATM)	BO-SNET	B1-SNET	B2-SNET		
FEELOUENIE					
EFFICIENT PATHS	B0-CDO	B1-CDO	B2-CDO		
FLIGHT PATHS (TROUGH	во-тво	B1-TBO		ВЗ-ТВО	
TRAJECTORY-	B0-CCO				
BASED		B1-RPAS	B2-RPAS	B3-RPAS	
OPERATIONS)					


ICAO UNITING AVIATION ASBUS FRAMEWORK

AIRPORT OPERATIONS

APTA

BO-APTA

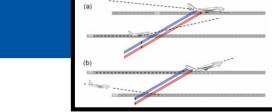
Optimization of Approach Procedures including vertical guidance

First step toward universal implementation of GNSS-based approaches.

- GNSS-based PBN approach procedures
 - GNSS + Baro VNAV
 - GNSS + SBAS
 - GNSS + GBAS

B1-APTA

Optimized Airport Accessibility


Next step in the universal implementation of GNSS-based approaches.

- Extension of GNSS-based approaches
 - GNSS + GBAS: CAT I capability to category CAT II/III
 - Potential integration of the PBN STAR directly
- Limited factor: emergence of multifrequency/constellation GNSS

WAKE

BO-WAKE

Increased Runway Throughput through Optimized Wake Turbulence Separation Revision of current ICAO wake vortex separation minima and procedures.

- RECATParallel operations
- WIDAO/WTMD

B1-WAKE

Increased Runway Throughput through
Dynamic Wake Turbulence Separation
Dynamic management of wake
turbulence separation minima based on
the real-time identification of wake
turbulence hazards.

- Leader/follower pair-wise static matrix of aircraft type wake separation pairings
- Use of airport wind information (predicted and monitored)
- Wind prediction/monitoring

RSEQ

BO-RSEQ

Improved Traffic Flow through Runway Sequencing (AMAN/DMAN)

Time-based metering to sequence departing and arriving flights.

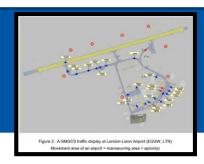
- AMAN and time-based metering
- DMAN
- Point Merge

N.O.

B1-RSEQ

Improved Airport Operations through Departure, Surface and Arrival Management

Extension of arrival metering and, integration of surface management with departure sequencing.


- Surface Management
- Departure and surface integration
- Extended arrival metering
- Utilization of RNAV/RNP routes

SURF

BO-SURF

Safety and Efficiency of Surface Operations (A-SMGCS Level 1-2) and Enhanced Vision System (EVS) Airport surface surveillance for ANSP.

- Element 1 A-SMGCS Level 1-2 (Surveillance & alerting)
- Element 2- Enhanced vision systems for taxi operations (e.g. infrared cameras, millimeter wave radar,...)

B1-SURF

Enhanced Safety and Efficiency of
Surface Operations- SURF
Airport surface surveillance for ANSP and
flight crews, cockpit moving map displays
and visual systems for taxi operations.

- Element 1: Basic surface situational awareness (SURF)
 - ADS-B In or TIS-B
 - Cockpit electronic maps

A-CDM

B0-ACDM
Improved Airport Operations through
Airport-CDM

Airport operational improvements through the way operational partners at

airports work together.

B1-ACDM Optimized Airport Operations through A-CDM Total Airport Management

Airport and ATM operational improvements through the way operational partners at airports work together.

- Airport Operations Planning (AOP)
- Airport Operations Centre (APOC)

Block 1

RATS

B1-RATS

Remotely Operated Aerodrome Control

Remote provision of ATS to aerodromes or remotely operated aerodrome control tower contingency and through visualization systems and tools.

- Element 1: Remote provision of ATS for single aerodromes
- Element 2: Remote provision of ATS for multiple aerodromes
- Element 3: Remote provision of ATS for contingency situations

GLOBALLY INTEROPERABLE SYSTEMS AND DATA (SWIM)

GLOBALLY
INTEROPERAB
LE SYSTEMS
AND DATA
(SWIM)

Block 0 2013

B0-FICE B0-DATM

BO-AMET

Block 1 2019

B1-FICE

B1-DATM

B1-AMET

B1-SWIM

Block 2 2025

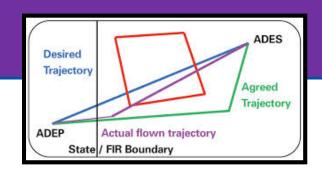
B2-FICE

B2-SWIM

Block 3 2031+

B3-FICE

B3-AMET



FICE

BO-FICE

Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration

Supports the coordination of groundground data communication between

ATSUs, based on ATS Inter-facility Data Communication (AIDC).

B1-FICE

Increased Interoperability, Efficiency and Capacity though FF-ICE, Step 1 application before Departure

Introduction of FF-ICE step 1, to implement ground-ground exchanges before departure using common flight

information reference model, FIXM, XML and the flight object used.

• New Flight Information Mechanism

DATM

BO-DATM

Service Improvement through Digital
Aeronautical Information Management
Initial introduction of digital processing
and management of information, by the

implementation of AIS/AIM making use of AIXM, moving to electronic AIP and better quality and availability of data.

B1-DATM

Service Improvement through Integration of all Digital ATM Information

Increase in information integration and models such as AIXM, FIXM, WXXM and support on a new concept of ATM others relate their concepts to the AIRM information exchange fostering access viafostering convergence, re-use, and internet-protocol-based tools Exchange collaborative alignment.

AMET

BO-AMET

Meteorological information supporting enhanced operational efficiency and safety

Meteorological information provided in support of flexible airspace management.

- Element 1: WAFS
- Element 2: IAVW
- Element 3: Tropical cyclone watch
- Element 4: Aerodrome warnings
- Element 5: Wind shear warnings and alerts
- Element 6: SIGMET and other operational meteorological (OPMET) information

B1-AMET

Enhanced Operational Decisions through Integrated Meteorological Information (Planning and Near-term Service)
Meteorological information supporting automated decision process or aids, involving.

- Element 1: Meteorological information
- Element 2: Meteorological information translation
- Element 3: ATM impact conversion
- Element 4: Meteorological information integrated decision support

Block 1

SWIM

B1-SWIM

Performance Improvement through the application of System-Wide Information Management (SWIM)

Implementation of SWIM services
(applications and infrastructure) creating •
the aviation intranet based on standard •
data models, and internet-based
protocols to maximize interoperability.

- Applications of SWIM on the ground
- Air ground data exchanges will remain based on point-to-point communication

OPTIMUM CAPACITY AND FLEXIBLE FLIGHTS (GLOBAL COLLABORATIVE

ATM)

OPTIMUM
CAPACITY
AND FLEXIBLE
FLIGHTS
(GLOBAL
COLLABORATI
VE ATM)

Block 0 2013 BO-FRTO BO-NOPS BO-ASUR BO-ASEP BO-OPFL BO-ACAS BO-SNET

Block 1
2019
B1-FRTO
B1-NOPS
B1-ASEP
B1-SNET

Block 2
2025

B2-NOPS

B2-ASEP

B2-ACAS

Block 3 2031+

B3-NOPS

OPFL, ACAS, ASUR

Improved access to Optimum Flight Levels through Climb/Descent Procedures using ADS-B This module enables an aircraft to reach a more satisfactory flight level for flight efficiency or to avoid turbulence for

• In-trail procedure (ITP)

safety.

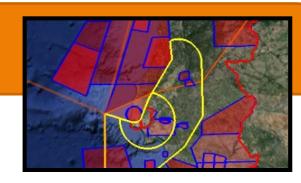
B0-ASUR Initial Capability for Ground Surveillance

Ground surveillance supported by ADS-B OUT and/or wide area multilateration systems. This capability will be expressed in various ATM services, e.g., traffic information, search and rescue and separation provision.

- Element 1: ADS-B
- Element 2: Multilateration (MLAT)

B0-ACAS ACAS Improvements

To provide short term improvements to existing airborne collision avoidance systems (ACAS) to reduce nuisance alerts while maintaining existing levels of safety.



FRTO

BO-FRTO

Improved Operations through Enhanced En-Route Trajectories

To allow the use of airspace which would adjusted for specific traffic patterns. otherwise be segregated (i.e., special use • airspace) along with flexible routing

- Element 1: Airspace planning
- Element 2: Flexible use of airspace (FUA)
- Element 3: Flexible routing

B1-FRTO

Improved Operations through Optimized ATS Routing

Introduction of free routing in defined airspace, where the flight plan is not defined as segments of a published route network or track system to facilitate

adherence to the user-preferred profile.

- Element 1: Free routing
- Element 2: Reduced route spacing
- Element 3: Dynamic sectorization

BO-NOPS

Improved Flow Performance through Planning based on a Network-Wide view

Collaborative ATFM measure to regulate peak flows involving departure slots, managed rate of entry into a given piece of miles-in-trail to smooth flows along a of airspace for traffic along a certain axis, certain traffic axis and re-routing of requested time at a way-point or and

FIR/sector boundary along the flight, use traffic to avoid saturated areas.

B1-NOPS

Enhanced Flow Performance through Network Operational Planning

ATFM techniques that integrate the management of airspace, traffic flows including initial user driven prioritization processes for collaboratively defining

ATFM solutions based on commercial/operational priorities.

- Element 1: Improved ATFM and ATFM-AOM integration
- Element 2: Synchronization
- Element 3: Initial user driven prioritization process (UDPP or fleet prioritization)
- Element 4: Full flexible use of airspace (FUA)
- Element 5: Complexity management

ASEP

BO-ASEP

Air Traffic Situational Awareness (ATSA)

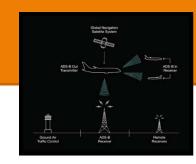
Two ATSA applications which will enhance safety and efficiency by providing pilots with the means to enhance traffic situational awareness and

achieve quicker visual acquisition of targets.

- Element 1: ATSA-AIRB
- Element 2: ATSA-VSA

B1-ASEP

Increased Capacity and Efficiency through Interval Management


Interval Management (IM) improves the merging trajectories maximizes airspace management of traffic flows and aircraft throughput while reducing ATC workload spacing. Precise management of intervals along with more efficient aircraft fuel between aircraft with common or burn.

SNET

BO-SNET

Increased Effectiveness of Ground-based Safety Nets

This module monitors flights while airborne to provide timely alerts to air traffic controllers of potential risks to flight safety.

- Element 1: Short-term conflict alert (STCA)
- Element 2: Area proximity warning (APW)
- Element 3: Minimum safe altitude warning (MSAW)

B1-SNET

Ground-based Safety Nets on Approach

To enhance safety by reducing the risk of warns the controller of increased risk of controlled flight into terrain accidents on controlled flight into terrain during final final approach through the use of approach.

approach path Monitor (APM). APM

EFFICIENT FLIGHT PATHS (TRAJECTORY-BASED OPERATIONS)

EFFICIENT
FLIGHT PATHS
(TROUGH
TRAJECTORYBASED
OPERATIONS)

BO-CDO BO-TBO BO-CCO

Block 0

Block 1 2019 B1-CDO B1-TBO B1-RPAS Block 2 2025 **B2-CDO**

B2-RPAS

Block 3 2031+

B3-TBO


B3-RPAS

CDO

BO-CDO

Improved Flexibility and Efficiency in Descent Profiles (CDO)

Deployment of performance-based airspace and arrival procedures that allow an aircraft to fly its optimum aircraft profile taking account of airspace

and traffic complexity with continuous descent operations (CDOs)

- Element 1: Continuous descent operations
- Element 2: Performance-based navigation

B1-CDO

Improved Flexibility and Efficiency in Descent Profiles (CDOs) using VNAV

To enhance vertical flight path precision during descent, arrival, and enables aircraft to fly an arrival procedure not

reliant on ground based equipment for vertical guidance.

TBO

BO-TBO

Improved Safety and Efficiency through the initial application of data link and SATVOICE En-Route

Implementation of an initial set of data link applications for supporting surveillance and communications in air

traffic services.

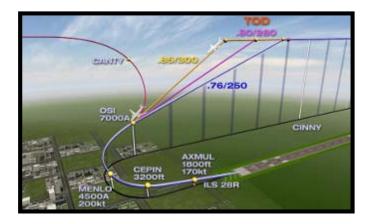
- Element 1: ADS-C over Oceanic and remote areas
- Element 2: CPDLC

B1-TBO

Improved Traffic Synchronization and Initial Trajectory-Based Operation.

Improve traffic flows synchronization at en-route merging points and optimize approach sequence through the use of

4DTRAD capability and airport applications (RTA).


- Element 1: Initial 4D operations (4D TRAD)
- Element 2: Data link operational terminal information service (D-OTIS)
- Element 3: Departure clearance (DCL)
- Element 4: Data link TAXI (DTAXI)

CCO

BO-CCO

Improved Flexibility and Efficiency in Departure Profiles - Continuous Climb Operations (CCO)

Deployment of departure procedures that allow an aircraft to fly its optimum aircraft profile taking account of airspace and traffic complexity with continuous climb operations (CCOs).

RPAS

B1-RPAS

Initial Integration of Remotely Piloted Aircraft (RPA) into non-segregated airspace

Implementation of basic procedures for operating RPA in non-segregated airspace.

- Streamline process to access non-segregated airspace
- Defining airworthiness certification for RPA
- Define operator certification
- Define remote pilot licensing requirements
- Define detect and avoid technology performance requirements

Flight plan

- Vision

- ASBUs

- Evolution.

Objective

To show Block 1 modules as an operational evolution from Block 0 modules.

26 August 2016 34

