## FLIGHT DATA MONITORING Energy Management Study SMS Department





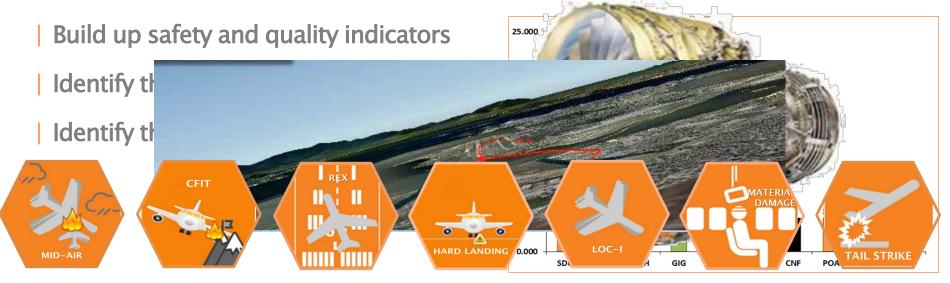
### GOL - Largest low-cost airline in LatAm










## Data analysis

#### **FDM Possibilities**



FDM can monitor many parameters of the aircrafts

It allows the global comprehension of all moments of a flight





## Energy Management study: reasons

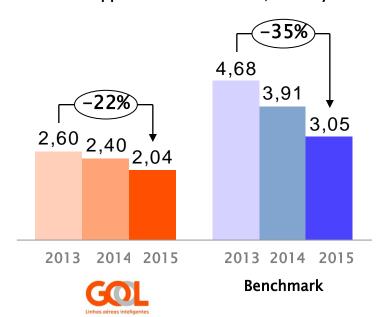
#### **FDX Outcome**



Analyzing the benchmarking with IATA of 2014 we realized that GOL's main issue was High Speed on Approaches...



... however, every FDM program is mute and deaf.


#### **Source of Information**



#### We analyzed the outcome of:

- **Statistics**
- Events algorithm review
- Pilots interview
- Industry Benchmark
- Flight emulations

#### Unstable approach related events/1000 cycles



#### **FDX Outcome**



- FDM events adjusted accordingly to severity
- ATC
  - The outcome of LOSA pointed that the ATC has a direct influence on a flight approach
  - Received ASR confirms that information











Pilots techniques

- Pilots have difficulties to recognize that the flight will be unstabilized at 1000ft.
- Incorrect use of aircraft deceleration tools





## **Data findings**



#### Stabilized Approach



Reduces workload



Improves situational awareness



**Increases Safety** 



Saves money

#### **Unstable Approach**



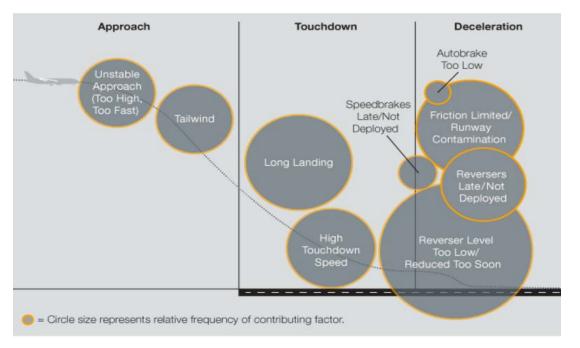


Most pilots proceed to landing



**TACE** ATC interference is a common percursor



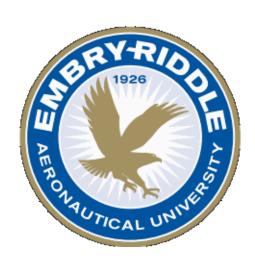

SAFETY Pilot's don't recognize it until 1,000 feet

...develop a method to help the state determine the point at which an unstable approach may become irreversibly.

### **Runway Overruns Precursors**



In order to avoid a bigger problem it was important to work on the first problem pointed by Boeing




## **Academic Partnerships**



#### Embry-Riddle Aeronautical University

- Most traditional aviation university in the world
- The cooperation aims to achieve a scientific confirmation of our findings
- ERAU will also develop a CBT based on our data
- This CBT could be shared with other airlines



## Rules of thumb for energy dissipation





#### **LANDING GEAR**

Most effective aid to decelerate the aircraft

- Identify the best moment to extend the gear is key for the success of the approach
- On a flight path of 3° typical aircraft decelerates 10kt/nm with gear down
- For each dot above the ideal flight path, gear extension should be anticipated in 1nm
- For every 20Kt of tailwind, 1nm should be added



















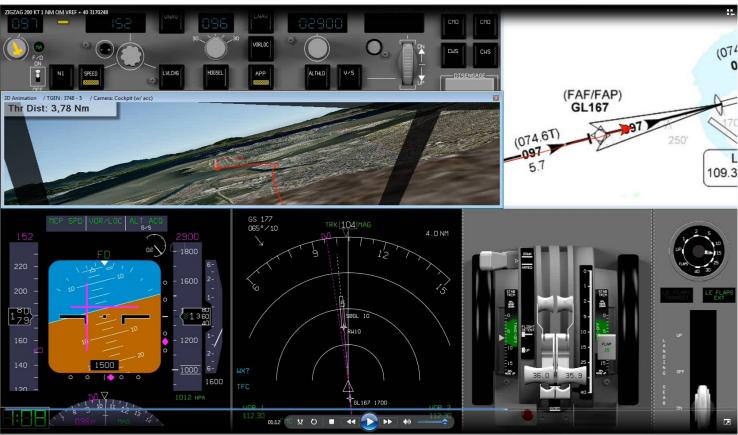




## **Energy Management Exemple 1**





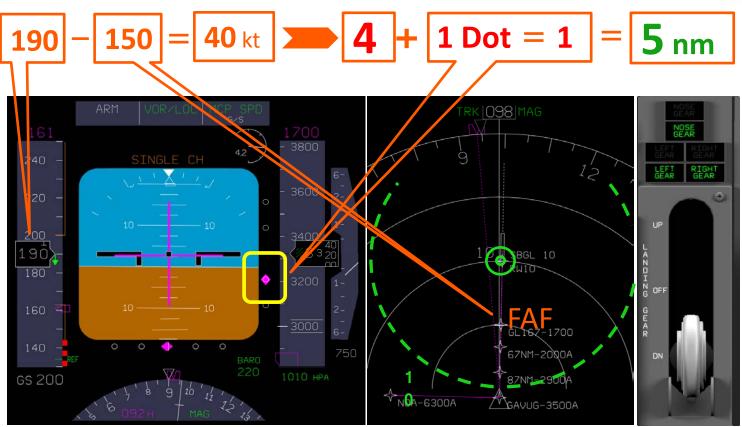













## Energy Management Exemple 2

## Flight Emulation - Above Glide Path





## Flight Emulation - Above Glide Path







## Energy Management Exemple 3

## Flight Emulation - High Tailwind



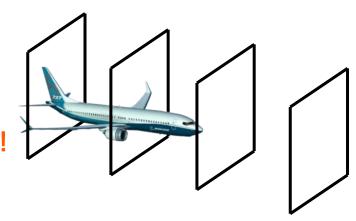


## Flight Emulation - High Tailwind








## Lessons learned

## Keep in mind



- Apply the three rules for energy management:
  - Speed
  - Glide
  - Wind

| If you're still not stabilized... GO AROUND!





#### Cost avoidance

#### Cost avoidance





#### **Direct costs:**

#### **Fuel**

(go arounds reduction)



Up to USD 400,000 per year **Brakes** 



Reverse



**Tyres** 



#### Cost avoidance





#### **Indirect costs:**

**Disruptions** (delays, cancellations)



Loss of image



**Accident** 





## Lessons learned

#### Lessons learned



- Flight patterns must be accomplished
- | Efficient energy management starts before top of descent
- Identify the best moment to extend the gear is essential for the success of the any approach
- There are different sources of information that you must look for
- Share and exchange information with other operators
- | Comprehend the cultural facts of your company is absolutely important
- Every safety rule must be accomplished
- Don't hesitate to look for a good partner
- Remember that you are preserving lives and saving money!



# Thank you!

