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Mechanisms that induce vertical
motions and implications




Types of induced vertical motions

Vertical motions can be induced by:
1) thermodynamically (by the distribution of stability in the column)
2) dynamically (by features in the atmospheric flow)

3) mechanically (by flow interactions with terrain).

This section will focus on dynamically-induced vertical motion. Examples:

Convergence/Divergence in low and upper levels; vorticity and advection, and
role of upper jets.
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Vertical Coordinates for assessing motion

* Pressure decreases with height P Pressure
logarithmically.

* Pressure coordinates are most
commonly used.

* Vertical motion is expressed as
the change of pressure with
time (dP/dt) or as the change @ 600
of elevation with time (dz/dt). @ 700k -
Their signs will be different. @ 80—t

m (aprox)




Vertical motion expressed in pressure and height coordinates

ﬂ Omega—> W = dP/dt P Z

300 9000

Change of pressure with time:
SEOTP w>0lw<0

w > 0 = descent (pressure increases) 400 7100

w < 0 = ascent (pressure increases) %
< 500 5400 &
z - ’
w = dz/dt 600 sl 4200
Change of elevation with time: 700 3000
w < 0 = descent (elevation decreases) 388 ?888
w > 0 = ascent (elevation increases) —————————————




Vertical Velocity (Omegas) in the GFS Model
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Mechanisms that induce vertical motions dynamically

Dynamically means induced by the flow.

Most common mechanisms for inducing ascent:

Upper divergence and low-level convergence
Vorticity advection increasing with height
Geopotential height/pressure falls (decreases)
Ageostrophic circulations induced by upper jets
Approaching upper trough or easterly wave

Warm advection below, cold advection aloft (they induce a thermodynamic
response by enhancing instability)
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Role of divergence and convergence

in inducing vertical motions

200 hPa

500 hPa

1000 hPa
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Shallow Convection

Vertical distribucion of divergence and
convergence during shallow convection

Shallow convection in northeast Brazil
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Numerical Representation of Shallow Convection

Vertical Cross 3ection Vertical Cross Section
Convergence (Red), Divergence (Blue), Vertical Motion (Arrow) Relative Humidity (Green), Vertical Motion (Yellow Arrow)
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Subsidence in the low troposphere

Enhanced convergence in the mid-
troposphere favors subsidence in the
low troposphere.

Thie favor fair weather and minimizes
the potential for convection and
precipitation.

It is very favorable for aviation as it
tends to minimize turbulence.

It can, however, favor low clouds and
stratus decks, including fog. Fog can
be a problem for landing and aircraft.
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Upper jet dynamics and
cyclogenesis




Upper Jets: Definition

« Strong currents in the upper troposphere that N
respond to underlying termal, and associate with & . .
a sharp change in tropopause height (higher
tropopause in the warmer side of the jet).

m
i3 | Cpm2

« Official definition (ICAO): strong currents that
develop in the upper troposphere (250-150 hpa)
with winds >70kt, and a maximum of >90kt is
present. Separation between currents needs to be |..
at least 5° of latitude. 5

« Operationally, however, the impacts can be felt
when speeds exceed 35kt, especially in the
Tropics where moisture and instability are higher.



Upper Jets In the Southern Hemisphere

3 branches. South Hemisphere:
subtropical jet (red), north polar jet
(orange) and south polar jet (white).

Subtropical (northernmost): 200-250
hPa.

North Polar;: 250 hPa.

South Polar;: 300-250 hPa.
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Transverse Bands
Ascending Jet in a moist environment
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Impact of Jets In Lee Surface Pressure

» Jets crossing the Andes enhance
adiabatic compression on the lee
side, strengthening the Surface low.

 Similar to lee cyclogenesis east of the
Rocky Mountains in the United States.

« Stronger jets result in lower Surface
pressures. This strengthens the low-
level jet fro the north, which
transports moist air from the Amazon
basin into Central Argentina.

Low-Level Jet




Jet streaks

Induced circulations and
cyclogenesis



Conceptual Model of a Jet Maxima
or “‘Jet Streak™

The effects of Coriolis . R
organize 2 regions of | |
enhanced Upper divergence: Divergence Convergence
in the warm side of the
entrance and in the cool side
of the exit.

Entrance Jet Maxima
These are favorable for
stronger ascent and
processes such as Convergence
cyclogenesis and \
frontogenesis. o

Divergence




Circulations In the entrance of a jet streak

» Upper divergence in the warm
side forces warm air to ascend.

« Upper convergence in the cool
side forces cool air to descend. ———

Warm air is forced to ascend "

« This is a “Direct Circulation” =
light air ascends and dense air
descends. Role: Restore
baroclinicity or reduce thermal
gradients.




Direct Ageostrophic Circulation
(Jet Streak Entrance)
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Circulations In the exit of the jet streak

 In the exit region, upper divergence
is positioned over the cool air
mass, forcing cold air to ascend.
Upper convergence on the warm -
side forces warm air to descend. Warm air s forced to

=
Maximo

——=iha

» This is an indirect circulation:
denser air rises and lighter air
sinks. This enhances baroclinicity

= tightens temperature gradients.  The cool exit region is the most

favorable for the strongest
cyclogenesis and frontogenesis.




Direct Ageostrophic Circulation
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Coupled Upper Jets

In their convergent side In their divergent side

Ideal for strong descent Ideal for strong ascent which favors
(subsidence) in synoptic scale. strong deep convection, cyclogenesis
and/or frontogenesis.



Conceptual model of cyclogenesis in the
south atlantic from coupled jets

Circulacion
Indirecta

. Ciclogénesis intensa
en region de ascensos

A large percent of heavy
Rainfall, severe weather and
rapid cyclogenesis events occur
during coupled jet situations.




Upper Troughs and Cyclogenesis

Upper troughs in the westerlies induce surface
lows downstream. Several processes

stimulate cyclogenesis: Calido Calido
. . I Cal id; H ’mgﬂ Tropopatisa
- Geopotential height falls as the system
approaches " Chlido 7 chide T~
. T L T500HPa
+ Enhanced Upper divergence ahead (east) of |[JEgier [ RN — Calido T~
the approaching trough - calido Calido 850 HP2
o 5 g . . /"/——\\ //—_\\\
- Cyclonic vorticity advection in the Upper qﬂ‘* (Céuga’éif\) NG’ (c:;u(&fﬁ\) \
troposphere <y \ — —y \—

- Differential termal advection in the lower
troposphere

- Diabatic heating processes.



Negatively tilted vs Positively Tilted
Upper Troughs

Positive;: Warm side trails behind the cold side

Negative: Warm side ahead (east) of cold side .
Positively

" Tilted

Negative Troughs are more dangerous:

— They associate with Upper jets coupled on their
divergent side = enhanced cyclogenesis = more ascent

— Moisture wraps around system favoring more instability
and enhancement by diabatic (latent heat release
enhancing) processes.

Negatively
Tilted

— More moisture = more precipitation




Cyclogenesis: Negatively Tilted
Upper Trough

September 2016



Cyclogenesis in Argentina, September 2016

Sep 11, 18Z
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Cyclogenesis in Argentina, September 2016

Sep 11, 18Z
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Cyclogenesis in Argentina, September 2016

Sharp SST gradients where the Malvinas current (Cold) encounters the Brazil current (warm)
favor strong cyclogenesis due to enhanced differencial temperature advection.

Enhances low-level warm advection east, and cold advection west of the center = more
baroclinicity and a stronger system.




Cyclogenesis: Positively Tilted
Upper Trough

September 2016



Cyclogenesis In Argentina, September 2021

1000 hPa

Positively

Tilted
Trough
Becoming
Negative



Cyclogenesis In Argentina, September 2021

250 hPa

1000 hPa ”“‘.'ﬁ

Tilted
Trough
Becoming
Negative
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Extratropical Cyclones




Extratropical Tropical Cyclone

* Large cyclone that forms in the extratropics,
associated with cold upper troughs located
upstream, and associated with temperature
gradients, thus it often develops fronts.

 Energy source: Temperature gradient
(potential energy) and associated thermal
advection, which stimulates vertical motions
when interacting with the upper structures.

 Maintenance: Enhanced temperature
gradients or baroclinicity.

—  %iF ICAO

North Hemisphere surface analysis of an
extratropical cyclone with fronts.

http://pressbooks-dev.oer.hawaii.edu/atmo/chapter/chapter-
13-extratropical-cyclones/
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Extratropical Tropical Cyclone Characteristics

Tropospheric system, from the surface to the
stratosphere.

They can be very large, on occasions larger than
2000km (20°).

Cold core aloft as it associates with an upper
trough, and assymetric core in the lower levels
from temperature gradients between air masses.

Vorticity: Becomes more cyclonic with height.
Lower tropopause.

Baroclinicity: Prevalent temperature advection
processes generally develop fronts.

38



Extratropical Tropical Cyclone

39




Barotropico vs Baroclinico

Baroclinicidad implica adveccion de temperatura.

Ejemplo:
SISTEMA BAROTROPICO SISTEMA BAROCLINICO

-NO hay adveccion de temperatura. -Hay adveccion de temperatura.
-Isébaras son paralelas a isotermas. -Isébaras NO son paralelas a isotermas.



Baroclinic Wave

Migrating disturbance that associates with large values of baroclinicity
(temperature advection processes).

It is characterized by extratropical troughs slanted with height and areas
of enhanced vertical wind shear.

Calido Calido

/\/\Tropopausa
Calido Erio Calido
Ciélido Frio Cialido

- 500 HPa

T00HPa

Frio
Calido Calido 850 HPa

Frio

Frio
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Baroclinic Wave

/Jet Stream
é Upper L
(o Troposphere
Ne Trough
Upper %6 i of
Troposphere P .\,,e‘
H Ridge i ©

250 hPa

X / ) Coi/ ) Warm

Surface /

—  %iF ICAO



Baroclinic Disturbance

 Plays a role in redistributing energy in the atmosphere.
 Potential energy is converted into kinetic energy.
 \Winds and vorticity vary with height.

How to recognize it in analyses?

-Looking at temperature/thickness gradients and evaluating termal advection.



rbance (North Hemisphere)

Vientos y Temp. 500 hPa | s YN Isohipsas y Adveccion de Tem

A F b
-7 i 73
;oA
i3

Pl
-

L, S :. .\,‘;

i F]




Baroclinic Disturbance (North Hemisphere)
Height contours and temperature advection at 500 hPa
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Baroclinic Disturbance (North Hemisphere)cCorte

Cross Section of winds
.
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Cold trough (NH) -

Isohipsas y Temp. 500 hPa e

Isohipsas y Temp. 250 hPa .
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Cold Trough (NH)
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Tropical Cyclones
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Tropical Cyclone

Hurricane lvan in 2004

L

 100-1000km cyclone that forms over warm
tropical oceans (>27°C) and develops a deep-layer
symmetric warm core up to the tropopause.

* Energy source: heat extracted from the ocean by
the winds, released into the atmosphere by rapid
condensation.

* Maintenance: It sustains itself based on the latent
heat-stronger winds-more heat extraction
positive feecback mechanism. Also by controlling
its environment (generates its own upper ridge

a5

COhtrOlling Shear). B ;40912/1:15 GOESI;U-VIS

Difference from other cyclones: the warm core in the entire

column. Shows very well in theta and thera-e cross sections.




Requirements for Tropical Cyclone formation

Warm SST: > 27°C through a depth of ~50m. ‘Basins

Coriolis Force: Minimum distance of ~500km o
(~5°) away from the equator.

Low Vertical Wind Shear: Low values (< 20kt)
between the surface and the upper
troposphere.

High Moisture: Moist up to the mid-levels. The
moister the better.

Conditional Stability: Unstable if moist
convection develops.

Preexisting Perturbation: \VICS, Easterly Wave,
ITCZ Low, induced perturbation, etc.

51

https://earthobservatory.nasa.gov/
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Tropical Cyclone Triggers

Easterly Waves, especially African Easterly Waves

 They associate with enhanced environmental rotation, but also moist
environments and ongoing latent heat release by convection.

Mesoscale Convective Complexes (MCC)

e Organized circular complex of thunderstorms can develop rotation and start
sustaining itself.

TUTT

* Induced Trough develops a closed circulation. Deep Convection gradually
warms up the column. The system transitions from subtropical (cold air aloft)
to tropical (warm air in the entire column)

West African Disturbance Line (WADL):

* Line of convection (similar to a squall line) which forms over West Africa and
moves into the Atlantic Ocean.
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Tropical Cyclone Vertical Structure
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Structure of the cyclone thermal core

ivalent potential
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Low and Upper Level Structure




Inside a Hurricane

Huracan Jeanne



MJO and Tropical Cyclones

MJO (Phases 1 and 8) stimulate Tropical
Cyclogenesis by enhancing upper
divergence and low-level westerlies and
stimulating rotation. However, a
favorable environment needs to be in
place: Warm and very moist airmass
over warm SSTs and a perturbation.

Figure: velocity potential (green for
upper divergent) during August 2020,
and the cyclones that formed during
those periods.
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Classification of Tropical Cyclones

* Tropical Depressions: Winds < 34kt
* Tropical Storms: Winds of 35-64kt
* Hurricanes and Typhoons: Winds > 64kt

—  %iF ICAO

Yucatan
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‘Jamaich:

Caribbean
Sea

Hurricane Mitch , nors

GOES-8 2KM'Resolution v
Channel 1 “Visible

October 26, 1998 1815 UTC




Seasonality in the Caribbean

June 20
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Tropical Cyclone Genesis Areas by Month




Storm Families

* S’[OI‘mS can fOI’m one after By | GOES-8 Visible

~ DB/24/1995 1445Z

the other, in environments
that characterize by very
warm SST, abundant
moisture, disturbed flow
(weak shear, enhanced
rotation) and ventilation.

« A strong wet MJO between
August and October can
generate this, if the
moisture and disturbed
flow are in place.




Feeder Band Impacts in remote locations

e Feeder bands generate low-level Ejemplo: Localizacion de las precipitaciones mas intensas
(azul) con un ciclon tropical al noreste de Nicaragua.

convergence and moisture in
remote locations.

o Thgse can generate heavy . 7 pared del ciclan'y
Rainfall, especially when T 0 coedantefron
Interacting with orography. '

. . 3 T A Nubosidad
e Sometimes, a cyclone in the ., Profunda

Caribbean interacts with the ITCZ
and the latter acts as a feeder
band. This is a problem in e,
southwestern basins of Central & ;rog.féﬁco en banda

_ e alimentacion/ITCZ
America.




Feeder Band Impacts in remote locations

e Rainfall field from Hurricane

Julia (2022) from raingauges in ‘ ;uw;ia;mm)
Central America. ' o
- ] 10-25
e Feeder band impacts are indicated i — g
with B, while Rainfall associated = 0 o |
with the center of the Cyclone Is LT ( — e
indicated with C. e f : B 175 - 200
‘o \ B 200 - 225
e The rains in Southern Costa Rica . —p |
were as excessive as those b §
produced by the center, since the 9,

ITCZ acted as a feeder band. Precipitacion acumulada avento

del 8 al 10 octubre 2022

Proyeccion Geografica: WGS84,
Datum: WGSB4




Satelite — Day Cloud Phase Distinction
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Subtropical Cyclones




Subtropical Storm Yakecan, off the

Su btrOpiC3| CYC|One coast of Uruguay and Brazil in 2022

N i S

A cyclone that forms in subtropical locations,
that has the characteristics of a tropical
cyclone in the lower levels and of an
extratropical cyclone aloft.

It develops a warm core, but underlying a cold
core associated with an upper trough.

They are non-frontal. They behave more like
tropical cyclones at the surface, but
temperatures tend to be lower.

What defines a subtropical cyclone:

A warm core underlying a cold core.

ICAQ

66



Sources of energy and evolution

Initially the thermal gradient/potential energy is the main source of energy. They
often transition from the occluded low inside an extratropical cyclone.

They usually develop in regions of weak to moderate temperature gradients.

The transition is favored when moving over warm SSTs while active deep
convection is occurring. This deep convection is favored by enhanced instability
provided by the cold air of the upper trough.

Eventually, the main source of energy becomes the heat from the ocean and
latent heat processes dominate, but the low and mid-troposphere only.

67



Characteristics of subtropical cyclones

Synoptic-scale cyclones with a cold core aloft and warm core in the low levels.
Lower tropopause, associated with the upper trough.

Vorticity: maxima in the lower levels and another maxima aloft.

Radius of maximum winds larger than tropical cyclones.

Winds have not been observed to exceed 64kt (Cat 1 hurricane)

SST generally > 23°C

68



Subtropical Cyclone In the North Hemlsp‘here

FIUJoyTemp 250hPa| . FIUJoyTemp 500 hPa S
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Ciclon Subtropical (HN)
Corte de Vorticidad Relativay THTA
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Ciclon Subtropical (HN)
Corte de Vorticidad Relativa, Vientoy THTA
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Ciclon Subtropical (HN)
Corte de Temperatura Equivalente Potencial
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Classification of a Subtropical Cyclone
Evans and Guishard, 2009

1. The system attains gale-force winds (>17 m s—1 or 35kt ) at 925 hPa, which need to
be sustained for at least three consecutive 12-hourly model analyses (equivalent to
36 h). The time of first onset of gales is defined as the ST formation time, T;

2. the hybrid structure also persists for at least 36 h (i.e., more than one diurnal cycle).
This hybrid structure criterion is determined using the CPS parameters (Hart 2003);

3. only storms that form (i.e., attain gales) between 20° and 40° are retained,;

4. the cyclone should not have been tracked as either a purely cold- or warm-cored
structure for more than 24 h prior to attaining hybrid structure; and

5. only storms located over the ocean from the first instance of a closed low through all
instances of hybrid characteristics and the first occurrence of gales are considered.



Subtropical Storm Lexi, Chile, May 2018

Rare Subtropical Cyclone that formed off the
coast of Chilein 2017.
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Subtropical Storm Yakecan, Uruguay/Argentina/Brazil, May 2022

e Subtropical Cyclone that formed off the coast of
Uruguay in May 2022, producing ~60kt winds when its
right front quadrant entered in the morning of May 17.

* |t then moved into southern Brazil where it produced
severe impacts including 2 fatalities.

Lo

- . OB 0.84um Satellite Image during 17 May
Coastal Flooding in Uruguay 2022 at 13 UTC, showing the left front

guadrant of the cyclone entering Uruguay.
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Evolutlon of Subtroplcal Storm Yakecan on Satelllte

S ‘m.ij«,m; '
o

16May 06Z 16May 182 17May 06Z 17May 187

The sequence shows a disorganized subtropical cyclone evolving from an occluded
low evident on panel 1. The cyclone then makes landfall in Uruguay in the morning of
17 May.
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Subtropical Cyclone in Argentina and Uruguay and
Southern Brasil, May 2022




Subtropical Cyclone In Argentina and Uruguay and
Southern Brasil, May 2022
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Subtropical Cyclone In Argentina and Uruguay and
Southern Brasil, May 2022
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Subtropical Cyclone In Argentina and Uruguay and
Southern Brasil, May 2022
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Thermal Structure of Subtropical Cyclone Yakecan
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and Caribbean
(NACC]) Office
Mexico City

Thank You!
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