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Fronts




Fronts

Front: The interface or transition zone L"‘—‘\
between two air masses of different i
density (baroclinic) TN
— Density depends on temperature ® L
« Moisture content affects density, L
but plays a secondary role 1. Frontal Wave @
L 2. Occludi
— Clouds and precipitation are not 3. Triple Point and
required, dry fronts are possible. Occluded Front A

Aviation Applications: Fronts can be a source

of thunderstorms, turbulence and icing



Baroclinic vs Baroclinic

BAROTROPIC

Temperature->

-NO temperature advection.
-1sobars and isotherms are parallel

Takeaway: Baroclinicity implies

temperature advection.

BAROCLINIC

Advection of temperature.
Isobars and isotherms are not parallel. They
form a cross-contour pattern (solenoid).



Temperature and Thickness Relationship

« The thickness of a layer is

directly proportional to the 200 hpa

mean temperature of that

layer, via de hysometric

equation; 850 hPa
Ea : 925 hp Greater

h=2zy— 2z = k-7, 111(&), Lower ; Thickness
g P Thickness
° Thus’ We Can analyze air Source: WPC International Desks D|stance

masses by evaluating the
layer thickness rather than

the temperature at a Thickness ~ Mean Temperature of a Layer
particular level.



Why use thickness instead of temperature?

 Provides a feel for vertical structure (depth of the layer)

« Reduces the diurnal/nocturnal temperature variability due to
heating/cooling in the boundary layer

« Captures the air mass better, smoothing the thermal effect of
surface features.



Gradients

« Agradient is the measure of how
much a given variable changes over
a distance.

LATITUDE

« The rate of change determines the
tightness of the gradient and
strength of the boundary.

« Tighter gradients relate to
« More baroclinicity
« Stronger temperature advection if % %%
winds develop, resulting in more L
violent changes.

ONGITUDE



Example: 950 hPa Temp vs. 1000-850 hPa Thickness

Tight
Gradient

Mounta'” ”$
,mMeXtco -

Non frontal, topographically induced gradients.
Very important to know the terrain!




Example: 1000 hPa Temp. vs 1000-500 hPa Thickness




1000 — 500 vs.

1000-500 hPa: Works in mid latitudes,
where cold surges typically span the
troposphere.

1000-850 hPa: Works better for the
tropics, as fronts become shallow and
loose their signature above 850 hPa.

1000-925 hPa thickness can also be
useful, for tropical latitudes. We use it in
WPC International Desks’ Front detection
algorithm.

(km)

yZ

1000 — 850 hPa Thickness

------------------------------------------------------ 300hPa

------------- CONSTANT PRESSURE SURFACE

1000-500 Thck

00-850 Thck
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Evaluating the Thermal Advection

Required:

1) Wind flow. Recommended wind flow options:
« Total Wind Vectors, barbs or streamlines

» Pressure or Geopotential Heights

— Assuming geostrophic, wind vectors will lie “parallel” to the pressure contours, and their
intensity will be a function on how tight the pressure gradient is.

— Not too useful in the tropics.

2) A scalar field representing temperature/density. Recommendations:
 Temperature

« Thickness (mean layer temperature)

« Others: Equivalent potential temperature, potential temperature, dewpoint



Cold , Warm and Neutral Advection

When the flow across the
thermal gradients points
from cold to warm.

\ i )
T
)
T

When the flow
thermal gradients points
from warm to cold.

across the

Neutral Advection

The flow is paraIII to the
gradient and the front lies
stationary.




Temperature Advection Analysis Exercise

Instructions:
Where indicated, using
the flow with respect to
the thickness gradient
determine if the
advection is:

- Cold (C)
Warm (W)
Neutral (N)




Proper Placement of Surface Front

 Surface Fronts are always drawn on the warm side of the tighter thermal
gradient and along a trough. The trough is not always well defined.

~Cold Front ~ Warm Front
A
Cold Air % %, 4
‘ Warm Air

j Thermal Gradient



Drawing the Surface Front PI\/ISL and BL Temps
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Drawing the Sur

face Front
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Drawing the Surface Front: PMSL and BL Te
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Drawing

the Surface Front: PMSL and BL Temps




Conceptual Model of Extratropical Cyclones

Northern Hemisphere

 Fronts associate with extratropical cyclones. There are different models for analysis:

(a) Norwegian Model (PMSL) IV (b) Shapiro-Keyser Model l. Frontal Wave Forms

Il. Frontal Wave
lll. Occluding Front
Comma

e e T TN




Application Conceptual Model — CONUS




Cold Advection over Warmer Waters
Post Frontal-Cold Air Cu

Following frontal passage, cold
alr advection over warmer
waters favors convective
Instability. This triggers post

frontal “cold air cumulus”™
(Moderate Cu and Cu
Congestus)




Mechanism Leading to the Formation of

Post Frontal Cold Air Cu

200

B \ r
,[ Prefrontal

Postfrontal Downward Upward Vertical
700 Vertical Motion (DVM) Motion (UVM)
650 Colder Air advecting over warm water T AT
14°C . 25°C

SFC
SST ~26°C SST ~26°C

- Contrast between air masses and low level convergence results in
upward vertical motion (UVM) ahead of the surface front.
- In an upper convergent pattern, the colder post frontal air sinks



Mechanism Leading to the Formation of

Post Frontal Cold Air Cu

200

B \ r
,[ Prefrontal

Postfrontal Downward Upward Vertical
700 Vertical Motion (DVM) Motion (UVM)

Warmer Air
25°C

850

SEC Moisture extracted from the ocean

SST ~26°C SST ~26°C

At low levels, the stronger winds extract moisture from the ocean and favor
enhanced mixing inside the boundary layer. Vertical mixing is enhanced by
Instability, produced by the colder air moving over warmer SST.



Mechanism Leading to the Formation of

Post Frontal Cold Air Cu

200

B \ r
,[ Prefrontal

Postfrontal Downward Upward Vertical
700 Vertical Motion (DVM) Motion (UVM)

Warmer Air
25°C

850

SFC
SST ~26°C SST ~26°C

- The deep UVM motion ahead of the front results in deep cloud cover
- Post frontal convection, facing DVM, caps at mid levels. This process
continues as long as cold air advects over the warmer ocean waters.



Post Frontal Cu/Shallow Convection over Water




Is there a front in A or B... or both?

. A SRR

180309/1415 GOES16 CHO2 VIS_0.64



Front Analysis Tools




Tools for Front Detection and Analysis

« Temperature / Thickness gradients (for baroclinicity)

« Winds and surface pressure (for the detection of the surface trough,
position of the front and advection)

 Relative humidity (for rapid detection of a potential boundary, vigen
that high relative humidity in the column usually peaks near fronts)

» Equivalent potential temperature (for detection of gradients between
warm/moist and cool/dry air masses)

- Precipitable water and dewpoint (they often relate to differences in air
mass moisture)



Some specific for the Caribbean




Analysis of 24 Hours Tendencies
1000 hPa Streamlines, 1000-850 Thickness and Surface Obs

SNBSS T e e
Prefrontal Over the Yucatan Postfrontal Over the Yucatan
T=26-29C, Td= 20-23C T Td

20181220 16:15Z7 20181221 15:157



Mean Layer Relative Humidity

« Mean Layer Relative Humidity
— The mean layer relative humidity between the surface and 500 hPa

— RH tells us how close to saturation
« Does not quantify moisture content

— Typically, RH 60% or greater for significant cloud cover

— Quasli-conservative property
* As the front propagates, moisture propagates with it.




Mean Layer RH

From GFS, 20200917_00, F96




ean Layer RH / 1000-850 THCK
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Mean Layer RH, THCK, PMSL
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~~Front drawn along the leading
edge/warm side of the.thermal
gradient
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Verification of the Forecast
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. Hurricane |

VT: 20200921/00Z




Equivalent Potential Temperature (EPT)

» Temperature of a parcel of air when you
add the latent heat released during
condensation to the sensible temperature of
the parcel at constant pressure (1000 hPa)

— It depends on the moisture content and actual
temperature of the parcel




EPT and MSLP
Evaluate Frontal Gradients
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1000-850 Thickness and MSLP
~ Evaluate Frontal Gradlent§
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EPT as a function of Moisture Content (PWAT)
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EPT (Magenta), 1000-850 Thickness (Cyan)
and MSLP (Yellow)
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Frontal Slope




Deep Polar Trough: 1000-850hPa Thickness

Deep layer support, with the mid level trough bottoming over the Gulf
of Mexico.




Vertical Cross Section
Temperature and Potential Temperature
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Analyzing fronts in a cross section: Evaluate the horizontal
gradient of Temperature or Potential Temperature




Vertical Cross Section
Equivalent Pot. Temperature and Potential Temperature

24:FIL3=AUG1I1300. GFE003

Analyze the horizontal
gradient of potential
temperature (THTA).

Determine which side Is the
cold/warm one

The cold front lies on the
warm side of the gradient

Front has deep layer support and it is clearly evident in
both layers, 1000-850 and 1000-500 hPa



Vertical Cross Section of Potential Temperature and EPT for F36
(Deep Boundary/Steep Slope)

GF23 . Lat'Lon 338/ TOW= 105/ J5W FIIR~= 36.FIIRE= OV 24. FIL3=AUG121300.GFE003
2013/ B/12¢ 0—THIE CIN2 DOTE CLE1&THTA CING CLE2&ANIM

Front has deep layer support and it is clearly evident in
both layers, 1000-850 and 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT for F48
(Deep Boundary/Steep Slope)

GF23 . Lat'Lon 338/ TOW= 105/ J5W FIIR—=46:.FIIRE= OV 24. FIL3=AUG121300.GFE003
2013/ B/12¢ 0—THIE CIN2 DOTE CLE1&THTA CING CLE2&ANIM

Front has deep layer support and it is clearly evident in
both layers, 1000-850 and 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT for F60.
(Shallow boundary/gentler slope)

GF23 . Lat'Lon 338/ TOW= 105/ 35W FIIR~ 60:FIIRE= O/ 24. FIL3=AUG121300.GFE003
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Front well defined in the 1000-850 hPa
layer, but no longer between 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT at F84.
Shallow Boundary south into the Tropics
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Old front well defined in the 1000-850 hPa
layer, but no longer between 1000-500 hPa




FRONT IDENTIFICATION TOOL
15HR FORECAST VT 15 UTC WED 29 APR 2020
DOC/NOAA/NWS WAFC-WASHINGTON

FRONT
Algorithm




ldentification of Surface Fronts

WinGridDS FRONT Algorithm

Developed at the WPC International Desks to help with the identification of fronts in the
Americas. Available online at: https://www.wpc.ncep.noaa.gov/international/wng/

What is plotted?

(1) Colors: Variable a = represents air mass
properties Cool/dry to warm/humid

(2) Contours: Variable p =
Magnitude of the gradient of o,
enhanced by gradients of

PWAT y ee_ 1000 hPa Fronts oftgn go here,. in the
warm side of gradients

(3) Complementary Fields
* 1000-850 hPa Thickness (GPM)
* Td=18°C at 2m
* 1000-925 hPa Winds (kt)




Identification of Surface Fronts

WinGridDS FRONT Algorithm

Schematic Cross Section of a Front

Constructing o 3
» 4 variables:
* 1000-850 hPa Thickness Thermal
* 1000-925 hPa Thickness Aspects
€
* Td 1000 hPa Moisture =< 15
3
» Quantities are multiplied to enhance 1
gradients for forecasters to see them 925 hPa
rapidly. ©
. 1000 hPa
> Over terrain, we look a bit higher (e.g. Sup

Mexican Plateau/SW US)



WinGridDS FRONT Algorithm |dentification of Surface Fronts

Constructing 8

Combination of

Schematic Cross Section of a Front

» Magnitude of the gradient of a
* “Boundaries between air masses”

» Magnitude of the gradient of PWAT
» Helps over complex terrain/tropics

1.5

Height (km)

-Reduces “noise” from adiabatic compression
in lee of mountain ranges. 1

-Enhances boundaries with strong moisture
signals. ©

Sup .

925 hPa

» Magnitude of the gradient of Be at 1000 hPa

» Enhances signature of the front near
the surface.

1000 hPa




Hand Drawn Analysis vs. Objective Analysis

HCK, PMSL Algorithm FRONT
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Verification of the Forecast
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Shear Lines




Shear Lines vs. Fronts

« Fronts: The transition zone between two air masses of different density
(baroclinic).
— Density depends on temperature and moisture content

— Present weather not a requirement.
— Fronts either lie along shear lines or can lag behind.

« Shear Lines: Transition zone determined by a windshift (horizontal wind shear),
without a significant change in density (baroclinicity)
* A line of maximum horizontal wind shear (10kt shear).
« Could be directional, speed shear or both.
« Lacks the baroclinicity/density discontinuity of surface fronts.




Evaluation of a Shear Line

» Area of wind confluence that 7 W \
extends outward from a col PN R =N
R ooy
— Near surface feature ; W : S
« Shear line can be found: N
— Along or trailing a surface front v Y - {
« When parallel, only show the front ,«ﬁj ///& F G W f'\*’;ii,';’;‘;a'mﬂwﬂﬂﬂ
— Ahead of the surface front N L bl T
« Show both ﬂ\,ﬂ\/w/%/“/\/\/\/\/s/\ﬂ R T

(\ L

=i

e o O B 2PN A
2
e 2 = ~ SN
GFS 2018/12/18 00 F96 CAaNNN T

— Never behind!



Shear Line Types

» Frontal Shear Line: When a cold front weakens along the
confluent asymptote

« Prefrontal Shear Line: Driven by a broad polar ridge, the
confluent asymptote often accelerates ahead of the surface
front as It nears the Caribbean basin.




Height
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Impacts: Echo Training

Echo Training

] + Shear lines, as they tend to

linger, present a higher risk

- - & of an echo training event

forming.

« But echo training can also
o e Fow form along a front.

the cloud layer
<— Surface winds

Distance



Shear Lines and Echo Training

 Echo training event in South
Florida (April 2023) produced
25 Inches of rain (625mm) In
less than 24 hrs.

National Weather Service Miami Florida
Preliminary Rainfall Reports From The Last 24 Hours

Analysis Data Source: Regional Observations

Created:
04/13/2023 10:36AM

Precipitation (in)

0.00"
0.01"-0.09"
0.10" - 0.24"
0.25" - 0.49"

I 0.50" - 0.99"

B 1.00"-1.49"
1.50" - 1.99"
2.00" - 2.99"
3.00" - 3.99"

B 4.00" - 5.99"

B 6.00"-7.99"

B 500" -9.99"
I 10.00" - 14.99"
B 15.00" - 19.99"
I 20.00" - 29.99"
30.00" - 50.00+"

This is an experimental product of the NWS GAZPACHO
software package. Care should be taken in using the data,
Unofficial observations may be plotted. Values at interpolated 0 17.5 3k
locations may not represent actual reports at that location. >

70

Miles




Echo Training — SE Bahamas

2020-11-18 13:50:14 UTC
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Frontal Shear Line




Evolution of a Frontal Shear Line
Front parallel to confluent asymptote
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Evolution of a Frontal Shear Line
Front stalls, remains parallel to confluent asymptote
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Frontal Shear Line
Frontolysis, stationary front starts to dissipate

Ry

I
|
Prefrontal

Tr\{ugh

Surface front parallel to confluent asymptote



Frontal Shear Line

Front dissipates, shear line remains

Broad ridge to the
north favors a cool
advective pattern
that contributes to
convective
instability

Convergence along
the shear line, when
present, provides

the low level X
forcing. |

I
Prefrontal

PETISNg
\
\

Surface front dissipates, confluent asymptote remains




10.3um Animation — Mar, 2018

Mar—12—-2018 23: 45UTC
2018 071
GOES—16

13/002.19/007

Frontal system streaming across the Bahamas briefly decays to a frontal
shear line as it loses its upper level support and stalls to the southeast.



IR 10.3um vs. GDAS: 20180314 00Z
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950 hPa Winds, Streamlines, and
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IR 10.3um vs. GDAS : 2018
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IR 10.3um vs. GDAS : 2018 187

CTER COMMANDS AND DELIMITERS OR EXIT
YR=1000' 330 FHR= OFERS= 0/ M- FILI=MARIS1800.GFS003

{7 7
& é‘,nr'v & o
'é{#' ES S

R

R I

IR 10.3um
950 hPa Winds, Streamlines, and
1000-850 Thickness



Speed Shear

 As the low level winds increase/decrease along a wind maxima,
horizontal wind shear us produced

— These results in areas of cyclonic/anticyclonic shear, with intensities
being a function of the gradient and intensity of the winds.

— Cyclonic/anticyclonic vorticity and ascent/descent also develops.




Shear Induced Upward and Downward Vertical Motion

 Cyclonic shear favors upward vertical motion
 Anticyclonic shear favors downward vertical motion

700

UVM DVM

850

s Cyclonic Shear Anticyclonic Shear




Speed Shear Induced Shear Line

1000 hPa Isotachs and Streamlines
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Shear Line Due to Speed Shear




Frontal Shear Line
Directional vs. Speed Shear

=~

Directional Shear 20180316 18Z Speed Shear 20191228 127
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Prefrontal Shear Line
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IR Image: Front or Shear Line?

wwwghcc.msfc.nasa, gov

21 Mar 2002
15:45 UTC -

Instructions:

Fronts: In a CAA pattern over the
warmer oceans, look for generation of
shallow post frontal convection.

Shear Line:

1.  Narrow band of clouds

2.  Dependent on upper level
support, normally see deeper
convective development than
with the surface front




2019-01-22 12:30:34 UTC




1000-850 Thi

INDUT 4 CHARACTER COMMANDS AND DELIMITERS OR EXIT
GFS3:LVIL=1000:LYR=1000/ 850 :FHR= 12:FHRE=

nds

0/ 24 FIL1=TAT221900. GFS003
20194 1/20/ 0—PMSEL CIN2 CLERS&BENT 1000&THCE CIN5 DOTS E50 F12 CLER4
WIWNG-VIZ2 --NEDVINSD= 100489 1040.49  1020.63 7.02




INPUT 4 CHARACTER COMMANDE AND DELIMITERS OR EXIT
GFE3LVL=1000:LYR=1000/ 850 :FHR= 12:FHR.E=

Analysis

0/ 24 FIL 1=JTATI221900.GFIS003
2019/ 1/204 0—-PMSL. CIN2Z CLRS&BENT 1000&THCK CIN5 DOTS 850 F12 CLR4
WIOWING-V32  -INEEMN/ESD= 100489 104049 1020.63 7.02




2019-01-22 12:30:34 UTC



04

Fronts and Shear Lines
in South America
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Temperature vs Thickness Gradients

Temperature 950 hPa |EEEERE=—"
T \ L 2%

Thickness 1000-850

RN

Gradients due to elevated terrain.



Evaluating Advection: Thickness 1000-
850 hPa and sea level pressure
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Where should we place the fronts?

—Presioén

* Fronts are always located in the
warm edge of the thickness
gradient, which is their position at
the surface.

They go along or near a surface
trough.

The occluded low trails behind the
triple point low.

[g150

G



Drying in Patagonia

Sharp decrease in relative humidity
once accelerated westerly Flow
crosses the cordillera. This is due to:

(1) Adiabatic descent, which warms
the air mass rising the temperature.

(2) Loss of water vapor from
condensation and then precipitation in
the windward side (Pacific Basin)

This difficults the usage of relative humidity to find the
fronts. It is important to loop for the termal gradient,
troughs and evaluate the movement of the whole
system.

(Temperatura, isObaras y
humedad relativa integrada >70% en sombreado)—>




Shear Line in South America

Ejemplo:

Wind ahead of the shear line

Shear Line: Confluent
asymptote. Change in the wind
direction/speed but not in the
properties of the air mass

Winds behind the shear line.

Front, warm edge of the
cooler air mass.

Isotermas
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Low-Level Jets




Low-Level Jets

An elongated region of relatively strong winds in the
lower part of the atmosphere.

Bonner criteria (for the South American Low-level Jet):
(1) northerly winds (850 hPa) with speeds =12 m/s,

(2) vertical wind shear between 850 and 700 hPa = 6 m/s,
(3) meridional component larger than the zonal component,
(4) winds from the north

Bonner criteria generalized:

(1) Winds at 850 hPa > 25kt

(2) Vertical wind shear between 850 and 700 hPa = 6 m/s

(3) Along-jet component larger than the cross-jet component

Composite IVT for SALLJ days (1979-2016)

- 5 I T
P > S A A A A AR —3—i o p B e T T
B h a5 > > 5 T

I e

75°'W 60°W 45'W 30'W 75'W 60w 45°W 30w

kg (ms)™
0 100 200 300 400 500

Seasonal composites of integrated vapor transport (IVT,
kg - m™" - s7") for South American low-level jet (SALLJ)
days identified at Santa Cruz/Mariscal (SC/MA) based on
ERA-I for 1979-2016.



Balance of forces that drive LLJ

Balance of forces from a LLJ in Germanuy, rotates
to simulate an easterly LLJ in the North Henisphere.

They flow close to parallel to the
pressure gradient but towards the low.
In lower latitudes (e.g. Caribbean), the
component towards the low is larger.

frictional
force

In the Caribbean, topography also plays
a role funnelling the jets.

They accelerate overnight over land,
due to a decrease in thermal friction
(no diurnal heating-induced thermals)



The Caribbean Low-Level Jet

Easterly Jet, peaking between 925 and 850 hPa, that
forms in the southern Caribbean during most of the

year.

It peaks in February (Jan-Mar dry season) and
July (mid-summer drought).

« Maximum forms in the southern Caribbean.

« Itis an important source of low-level wind shear,
especially near the coast of northern Colombia
and northwest Venezuela.
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Wind shear along the Caribbean Low-Level Jet

Wind shear is stimulated in regions of enhanced
wind speed gradients.

In the Caribbean, February LLJ tend to favor more
wind shear between 900 and 750 hPa, and down to
the surface downstream from the LLJ (reaching
eastern Central America).

July LLJ tend to favor stronger shear but closer to
the surface, up to 850 hPa. Being a deeper LLJ,
another region of wind shear is facored between
650 and 550 hPa.

81W 78w 7 63N
| of monthly win peed1 ) averaged from 12.5 to
{A]Fb y d{B] [Aib1FoJIy
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Horizontal Wind Shear

» Develops where the largest horizontal
wind gradients occur.

« This is aregion where large values of
turbulence develop.

» Generates vorticity. Cyclonic vorticity
(NH: left of the jet maxima and SH: right

3 59 7Pa Winds, 22 Jul 2021 18Z

—

of the jet maxima) favors ascent. — —
 Regions of cyclonic shear in LLJ can > ; —_—

add the vertical motion/convection o = -

hazard to the existing turbulence O =~

‘I {

= ‘ -
e~ Cyclonic

“Wind Shear

hazard.



Where do LLJ favor ascent and extreme rainfall?

LLJ enhance ascent along their cyclonic convergent side.

Ascent in the cyclonic exit of the Caribbean LLJ entering
eastern Nicaragua often favors convection (T storms) and

heavy rain in SE Nicaragua and E Costa Rica. = —— =
— — ——— 5\ Cyclonic’, %
The 22-23 July 2021 event produced excessive rainfall and — Ny |"E>3</it 850 hPa

flooding in eastern Costa Rica.

Cyclonic Exit
850 hPa

Convergence
1000 hPa

Accumulative Rain
[ D N B e |
0 5 10 20 30 50 100 150 200 250 [mim]



Central American Gap Flows

Low-level jets that form along and
downstream from Central American gaps in
the terrain, when surface pressures in the
Caribbean basin increase.

a) Tehuantepecer
b) Papagayo / Nicaragua
c) Panama

February (NARR)

They produce low-level wind shear affecting
even some airports (e.g. David, Panama).

Low-level jet induced upwelling
(blue) after a period of intense gap
flows, in NOAA NVVL’s SST
Anomaly OISST Database.

They affect thunderstorms development and
also cool the ocean by inducing upwelling.

.,



Cold Water
Upwelling
Gulf of
Tehuantepec
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Cold Water Upwelling
Gulf of Tehuantepec
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The terrain in Central America can favor strong winds In
populated areas, such as David, Panama

NOCHE

DIA Mezcla turbulenta
vertical de momento

Descenso y (velocidad) intensa

Compresion trae vientos fuertes a

Adiabatica la superficie.

Estabilidad nocturna
limita el transporte
de vientos fuertes a
la superficie.

Descenso y
Compresion
Adiabatica

>20kt >20kt
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Severe Winds in David, Panama (MPDA)
¢ Can they be forecasted with the GFS?

Anélisis vs observaciones de vientos en David RS0l =R ETSSRY [aTo N (01074
1/FEB/2018 al 16/MAR/2018 vs station winds (18Z or 6
hours prior).

40

» Direct relationship

» Red: Events >20kt In
MPDA when GFS winds
exceded 20kt in Bocas del
Toro (upstream).
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and Caribbean
(NACC]) Office
Mexico City

Thank You!
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