

Who we are

Voice of Air Traffic Management

193 Members

technology and other service providers

96 ANSPs

90% of world traffic

Why does ATM need to change?

Environment

Capacity

New Entrants

Safety/Security

••••• The Complete Air Traffic System (CATS) Global Council

The CATS Global Council is an **innovation forum** of industry bodies, which believes that a shared blueprint and joint action are vital to make sure that future skies are efficient, clean and safe and can generate global economic prosperity and social welfare.

ICAO Vision for the future

••••• ICAO Global and Holistic Vision of the AAM Ecosystem

Evolutionary

Stages

Enablers

supporting

the Stages

Aspirational

Vision

Gap

Analysis

••••• Supporting ICAO to develop a Global and Holistic Vision of the AAM Ecosystem

••••• Stage 1. Short-Term Advanced Air Mobility (AAM) Operations

Small-Scale UAS and Crewed VTOLs

- Focus on practical applications of AAM technologies in urban and remote environments.
- Utilizes existing infrastructure and regulatory frameworks.
- UAS operations include last-mile delivery, medical supplies, and infrastructure support.
- Crewed VTOLs used for urban air taxi services, regional commuters, EMS, and cargo delivery.
- Key enablers include strategic deconfliction, segregated airspace, UTM systems, Common Information Service Provider and BVLOS operations.

••••• Stage 2: Dedicated AAM Airspace for High-Density Operations

UAS and Crewed VTOLs operating in highly congested airspaces

- Maintains some segregation from general aviation to manage complexity.
- Dedicated airspace includes corridors, vertiports, and management systems.
- Key enablers: Advanced automation, UTM systems, and robust safety protocols.
- Strategic segregation enhances safety while managing high-density traffic.
- Supports operations like passenger transport, cargo delivery, and emergency response.

••••• STAGE 3. Mixed-Traffic AAM Operations in Medium-Density Environments

Mixed traffic: UAS, VTOL, General Aviation, and IFR traffic

- Key features: Collaborative digital airspace, communication protocols, DAA systems.
- Partial integration with major airports for passenger and cargo transport.
- UTM and ATM integration for real-time situational awareness.
- Community and infrastructure integration for seamless travel.
- Challenges: Regulatory development, public acceptance, safety, and reliability

••••• Stage 4. Advanced Airspace and Global AAM Integration

Small-Scale UAS and Crewed VTOLs

- Global interoperability and ATM/UTM integrated airspace ("Integrated Sky").
- Advanced multi-dimensional traffic management systems with AI-driven automation.
- Cross-modal and cross-border integration supporting seamless transportation networks.
- Sustainability focus with green technologies and environmental impact monitoring.
- Global infrastructure development with vertiports and CNS system integration.
- Challenges include cybersecurity, public trust, and socio-economic impacts.

••••• Stage 5. Highly Automated and Fully Integrated AAM Ecosystems

Highly automated AAM operations

- Complete autonomy with AI-driven systems managing all aspects of operations.
- Minimal human involvement, with humans shifting to supervisory roles.
- Adaptative ecosystem with real-time decision-making and optimization.
- Smart, interconnected infrastructure with dynamic airspace management.
- Universal integration across transportation modes and global infrastructure.
- Sustainability-focused with zero-emission operations and environmental monitoring.

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Establish global, regional, and local AAM strategies.
- Create <u>multi-stakeholder</u> governance frameworks.
- Foster <u>collaboration</u> between public and private sectors.
- Align national and international aviation policies

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Develop <u>harmonized</u>
 regulatory and certification
 standards for AAM vehicles
 and systems.
- Establish <u>certification</u> pathways for AAM operators and automated systems.
- Integrate <u>security</u> protocols for unmanned and manned systems.
- Ensure <u>safety</u> by incorporating advanced risk management.
- Prioritize <u>sustainability</u> in vehicle design and operations.

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Engage communities through education and outreach.
- Address public concerns about noise, privacy, and safety.
- Promote <u>equitable</u> access to AAM services.
- Encourage media and public communication to build trust.

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Build <u>vertiports</u> and landing sites in urban and suburban areas.
- Establish electric and alternative fuel charging infrastructure.
- Implement robust <u>digital</u> <u>networks</u> for communication and data sharing.
- Plan for <u>scalable</u> infrastructure that can handle future growth.
- Spectrum!

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Integration of UTM / ATM systems.
- Implement <u>dynamic</u> airspace reconfiguration for flexibility.
- Trajectory-Based Operations (TBO)
- Advanced Communication
 Systems
- Digital Twin and Simulation Technologies
- Detect and avoid (<u>DAA</u>) system
- New/adapted flight rules?

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Advance <u>electric</u> and hybrid propulsion systems.
- Enhance vehicle performance, reliability, and safety.
- Incorporate sustainability into aircraft design and lifecycle management.
- Establish certification processes for AAM aircraft and their subsystems.
- Invest in automation, AI, and autonomous technologies.

- 1. Policy, governance, and strategy
- 2. Regulations, Safety, Security & Sustainability
- 3. Societal acceptance
- 4. Supporting Aviation Infrastructure
- 5. Airspace Integration
- 6. Aircraft Systems
- 7. Workforce & new skills

- Train the workforce for new roles in AAM operations and management.
- Promote STEM education and upskilling programs.
- Develop certification and licensing for AAM operators and automated systems.
- Support the transition to automation-enhanced work environments.

••••• Thriving aviation community CANSO "Tomorrow's Voices" Initiative

- 1. Create partnerships to champion STEM education among diverse candidates, ensuring that we cultivate a talent pipeline that reflects the diversity and creativity of the global community.
- 2. **Enhance recruitment efforts for critical roles** such as systems engineers, data architects, analysts, and experts in Al/ML. By organizing **diversity and inclusion** awareness campaigns, we aim to promote and implement measures that challenge existing norms and encourage the evolution of the aviation workforce.
- 3. **Identify future skills needed** in aviation and define clear career paths that will allow young professionals to thrive in a rapidly changing industry.

Memorandum of Understanding Between

EUROAVIA – The European Association Aerospace Students

CANSO - The Civil Air Navigation Services Organisation

21/03/2024

A unified vision for the future

Advance a **common future sky vision** for transformation of ATM and integration of AAM, encompassing all aircraft from low-level drone operations to Higher Airspace Operations.

ICAO Holistic Vision and global concept for higher airspace operations (HAO)

GANP - Global Air Navigation Plan, ASBUs & GATMOC – Global ATM Operational Concept

ICAO Global and Holistic
Vision of the AAM Ecosystem

Thank You

For more information, please contact:

Eduardo Garcia

Senior Manager Future Skies

eduardo.garcia@canso.org

