









#### **Outlines**

- 1. Navigation facilities
- 2. Fixes
- 3. Fix tolerances
- 4. Fixes satisfactory criteria
- 5. Protection area
- 6. Aircraft parameters
- 7. Turns protection



# **Navigation facilities**





- ☐ Provide navigation information:
  - Position;
  - Track guidance;
  - Vertical guidance;
  - Distance;
  - Ftc.
- □ Information is received on-board with corresponding receivers.



# **Conventional navigation**

| Flight parameters control:        |               |                      |  |  |  |  |
|-----------------------------------|---------------|----------------------|--|--|--|--|
| Speed                             |               | > Airspeed indicator |  |  |  |  |
| Altitude                          |               | Altimeter            |  |  |  |  |
| Bank angle                        |               | Horizon              |  |  |  |  |
| Vertical profile (climb, descent) |               | > Variometer         |  |  |  |  |
|                                   |               |                      |  |  |  |  |
| Trajectory control:               |               |                      |  |  |  |  |
| Heading                           | <u> </u>      | Compass              |  |  |  |  |
| Time                              | <b>&gt;</b>   | Chronometer          |  |  |  |  |
| NDB                               |               | ADF RMI, ADF RMI     |  |  |  |  |
| VOR                               |               | VOR RMI, CDI         |  |  |  |  |
| ILS                               | $\rightarrow$ | CDI RMI (LOC, GP)    |  |  |  |  |
| DME                               | $\rightarrow$ | DME receiver         |  |  |  |  |



# **PBN** navigation

| Flight parameters control         |                    |
|-----------------------------------|--------------------|
| Speed                             | Airspeed indicator |
| Altitude                          | Altimeter          |
| Bank angle                        | Horizon            |
| Vertical profile (climb, descent) | > Variometer       |
|                                   |                    |
| Trajectory control                |                    |
| Heading                           | Compass            |
| Time                              | Chronometer        |
| Navigation infrastructure         | ADF RMI, ADF RMI   |
| VOR-DME                           | FMS - HSI          |
| DME/DME                           |                    |
| GNSS                              | GNSS receiver      |



# **VOR** guidance







# NDB guidance





# **ILS guidance**

- ☐ ILS components:
  - **PLOC** (Localizer):
    - lateral guidance;
    - Frequency: VHF.
  - **GP** (Glide path):
    - Vertical guidance;
    - Frequency: UHF.
  - **L-DME** or Markers:
    - Distance
    - L-DME:
      - Frequency: VHF;
      - Coupled with L-DME.



O OACI MA

### **Fixes**

African Flight Procedure Programme (AFPP)

#### ☐ Terminal are fixes:

Initial Approach Fix : IAF (mandatory);

Intermediate approach Fix : IF;

Final Approach Point/Fix : FAP/FAF

\*\*Holding Fix : HF;

Missed Approach Point (MAPt): MAPt:

Mandatory for NPA.

Turning Point or Altitude

Missed approach and

Departure.



- ☐ Components of the fix tolerances:
  - Navaid tolerance;
  - Airborne receiving system tolerance;
  - Flight technical tolerance (FTT);
  - Distance to the DME Station;
  - Fixes in link with a geographical position.
- ☐ Tolerance area:
  - Area where pilots identify the fix.



African Flight Procedure Programme (AFPP)

#### **Information accuracy**

#### Accuracy of the navaid reflected on:

Fix: tolerance area

Trajectory : segment protection area



|        | Angle β value |              |  |  |
|--------|---------------|--------------|--|--|
| Navaid | Tracking      | Intersecting |  |  |
| NDB    | 5.2           | 4.5          |  |  |
| VOR    | 6.9           | 6.2          |  |  |
| LOC    | 2.4           | 1.4          |  |  |



#### Collocated facilities



Figure I-2-2-1. Intersection fix tolerance areas



African Flight Procedure Programme (AFPP)

#### **Information accuracy**



|        | Angle β value |              |  |  |  |
|--------|---------------|--------------|--|--|--|
| Navaid | Tracking      | Intersecting |  |  |  |
| NDB    | 5.2           | 4.5          |  |  |  |
| VOR    | 6.9           | 6.2          |  |  |  |
| LOC    | 2.4           | 1.4          |  |  |  |



African Flight Procedure Programme (AFPP)

#### **VOR and NDB dead cone zone**



| $R = H x \tan (\beta)$ | with R and H in km or                     |         |
|------------------------|-------------------------------------------|---------|
| R = 0.164Htan          | $(\beta)$ with H in thousands of ft and R | t in NM |

| Navaid | Angle β value (°) |
|--------|-------------------|
| NDB    | 40                |
| VOR    | 50                |

VOR or NDB



African Flight Procedure Programme (AFPP)

#### **Tolerance overhead VOR and NDB**



| β     | ICAO |  |  |
|-------|------|--|--|
| V O R | 5 °  |  |  |
| N D B | 15°  |  |  |



African Flight Procedure Programme (AFPP)

#### **Tolerance overhead VOR and NDB**



- ☐ Fixes using DME defined only outside the DME station dead cone;
- **DME** issues:
  - Provide slant distances , while;
  - Procedure designer uses horizontal distances.

☐ Minimum usable ground distance:

 $D = Hxtan(55^\circ)$ 

☐ Fix location varies with aircraft altitude



African Flight Procedure Programme (AFPP)

#### **Tolerance of TP over VOR or NDB**

- ☐ Turning Point along Missed Approach
  - © Constant value of +/-0.5 NM up to:
    - **2** 500 ft for VOR;
    - **3** 600 ft for NDB.
  - Above: use regular dead cone zone.



African Flight Procedure Programme (AFPP)

### **Waypoint tolerances (PBN)**

- ☐ The fix tolerance represents where A/C is assumed to be regarding the fix position and the ACCEPTABLE PROBABILITY
- ☐ The tolerance addresses a 2 SD (standard deviation) value





# **Fixes satisfactory criteria**

- ☐ IAF and IF: +/- 2 NM
- □ FAF : +/- 1 NM
- ☐ Step down fix meets criteria of corresponding segment
- MAPt : computed value
- □ No criteria for TP (due to constant value)



#### **Protection area**

- Navigation facility accuracy
- ☐ Human factors
  - Reaction time prior to requested actions;
  - Skill to perform requested actions.
- **□** Wind effect



# **Aircraft parameters**

- ☐ Five categories: From A to E (H)
  - Max and min Speed must be known by both:
    - Pilots;
    - Designers;
    - Air traffic controllers.
  - Speed limitations are possible (Only the maximum):
    - Must be displayed on chart.
  - Speed table available.

Table I-4-1-2. Speeds (IAS) for procedure calculations in knots (kt)

| Aircraft<br>category | $V_{at}$ | Range of<br>speeds for<br>initial approach | Range of<br>final approach<br>speeds | Max speeds<br>for visual<br>manoeuvring<br>(circling) | Max speeds for<br>missed approach |          |
|----------------------|----------|--------------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------------|----------|
|                      |          |                                            |                                      |                                                       | Intermediate                      | Final    |
| A                    | <91      | 90/150(110*)                               | 70/100                               | 100                                                   | 100                               | 110      |
| В                    | 91/120   | 120/180(140*)                              | 85/130                               | 135                                                   | 130                               | 150      |
| С                    | 121/140  | 160/240                                    | 115/160                              | 180                                                   | 160                               | 240      |
| D                    | 141/165  | 185/250                                    | 130/185                              | 205                                                   | 185                               | 265      |
| Е                    | 166/210  | 185/250                                    | 155/230                              | 240                                                   | 230                               | 275      |
| Н                    | H N/A    |                                            | 60/90***                             | N/A                                                   | 90                                | 90       |
| Cat H (PinS)***      | N/A      | 70/120                                     | 60/90                                | NA                                                    | 70 or 90                          | 70 or 90 |

 $V_{at}$  Speed at threshold based on 1.3 times stall speed  $V_{so}$  or 1.23 times stall speed  $V_{slg}$  in the landing configuration at maximum certificated landing mass. (Not applicable to helicopters.)

| Altitude | Conversion factor |        |        |        |        |        |         |        |
|----------|-------------------|--------|--------|--------|--------|--------|---------|--------|
| (feet)   | ISA-30            | ISA-20 | ISA-10 | ISA    | ISA+10 | ISA+15 | ISA+20  | ISA+30 |
| 10,000,0 | 1.0067            | 1.1104 | 1.1410 | 1.1627 | 1.1050 | 1.1050 | 1.20.62 | 1.2250 |
| 10 000.0 | 1.0967            | 1.1194 | 1.1418 | 1.1637 | 1.1852 | 1.1958 | 1.2063  | 1.2270 |
| 11 000.0 | 1.1136            | 1.1369 | 1.1597 | 1.1822 | 1.2042 | 1.2150 | 1.2258  | 1.2470 |
| 12 000.0 | 1.1309            | 1.1547 | 1.1781 | 1.2011 | 1.2236 | 1.2347 | 1.2457  | 1.2674 |
| 13 000.0 | 1.1485            | 1.1730 | 1.1970 | 1.2205 | 1.2435 | 1.2549 | 1.2661  | 1.2884 |
| 14 000.0 | 1.1666            | 1.1917 | 1.2162 | 1.2403 | 1.2639 | 1.2755 | 1.2871  | 1.3098 |
| 15 000.0 | 1.1852            | 1.2108 | 1.2360 | 1.2606 | 1.2848 | 1.2967 | 1.3085  | 1.3318 |
| 16 000.0 | 1.2041            | 1.2304 | 1.2562 | 1.2814 | 1.3062 | 1.3184 | 1.3305  | 1.3544 |
| 17 000.0 | 1.2235            | 1.2505 | 1.2769 | 1.3028 | 1.3281 | 1.3406 | 1.3530  | 1.3775 |
| 18 000.0 | 1.2434            | 1.2710 | 1.2981 | 1.3246 | 1.3506 | 1.3634 | 1.3761  | 1.4011 |

TAS= k\*IAS

# IAS has to be converted into True Air Speed using the conversion factor k: TAS = IAS $\times$ 171233 [(288 $\pm$ VAR) - 0.00198H]<sup>0.5</sup> $\div$ (288 - 0.00198H)<sup>2.628</sup>

where: VAR = Temperature variation about ISA in °C, H = Altitude in feet.



African Flight Procedure Programme (AFPP)

#### **Turn parameters**

- □Altitude;
- ☐ Indicated airspeed (IAS)
- **□**Wind;
- $\square$  Bank angle ( $\alpha$ );
- ☐ Flight Technical Tolerance (FTT).



African Flight Procedure Programme (AFPP)

#### **Turn radius**

$$R = \frac{(6\ 355 \text{ta}\ \text{n}(\alpha))}{\pi TAS}$$

#### Where:

- R: rate of turn in °/s (3° max)
- TAS in km/h
- $\alpha$  : Bank angle in °

$$\mathbf{r} = \frac{TAS}{20\pi R}$$

#### Where:

- r: turn radius in km or NM
- TAS in kt

$$R = \frac{(3 \ 431 tan(\alpha))}{\pi TAS}$$

#### Where:

- R: rate of turn in °/s(3° max)
- TAS in kt
- $\alpha$  : Bank angle in °



African Flight Procedure Programme (AFPP)

#### Wind effect: Straight trajectory



$$\mathbf{E}\mathbf{w} = \mathbf{T}(\mathbf{A}\mathbf{B}) \cdot \mathbf{W}$$

W: Wind speed (in m/s) and T: Time in s Ew is the wind effect (radius of circle in m)



#### Wind effect: Curved trajectory

$$Ew = T (AB) \cdot W$$

$$Ew = \frac{r.\theta.W}{TAS}$$



W: Wind speed (in m/s) and T: Time in s Ew is the wind effect (radius of circle in m with  $T(AB) = (\beta r) / TAS$  $\beta$  In rd, r in m, TAS in m/s



- ☐ Outer limit : wind spiral
  - Wind conditions blowing paths outside nominal path
  - Not a trajectory
  - But the envelop of actual turning paths
- ☐ Inside limit: not a wind spiral but lines
  - Wind conditions keeping paths inside nominal
- ☐ Three methods for turn protection:
  - Wind spirals;
  - Simplified spirals (bounding circles);
  - Method of arcs (for small turns).



# Wind spirals



African Flight Procedure Programme (AFPP)

E: Wind effect

r: radius of turn

 $\Theta$ : Angle of turn



# Wind spirals



# Simplified Wind Spiral (bounding circles)



African Flight Procedure Programme (AFPP)

$$Ew_{90^{\circ}} = \frac{Vw}{40R}$$

Where:

□ Vw: Wind velocity in kt

□R: Turn rate in %s

r = Radius of turn

E = Wind Effect for 90° of turn

nme 32



# Simplified Wind Spiral (bounding circles)



African Flight Procedure Programme (AFPP)

r = Radius of turn

E = Wind Effect for 90° of turn

