

Outlines

- 1. Introduction
- 2. The precision segment
- 3. Obstacle assessment in the precision segment
- 4. P.A. initial and intermediate approach segments
- 5. P.A. missed approach
- 6. Publication

African Flight Procedure Programme (AFPP)

■ Precision approach procedure: Instrument approach procedure using precision lateral and vertical guidance with minima as determined by the category of operation; Encompass a "Precision segment". ☐ Guidance systems or Navaids: ILS, MLS, PAR, GBAS & SBAS. General criteria: Arrival, initial and final missed approach segments. ☐ Specific criteria: intermediate, final segment and initial/intermediate missed approach segments. ■ Three method for OCH computation (ILS Cat. II & III): Basic ILS surfaces; Obstacle Assessment Surfaces (OAS); © Collision Risk Model. ■ No MOC but Height Loss (HL).

- **□** Guidance information:
 - ILS, MLS, PAR, GBAS & SBAS.
- ☐ Guidance provided in final segment:
 - Vertically (slope);
 - Laterally .
- ☐ In missed approach :
 - No vertical guidance provided;
 - **Property** No track guidance required:
 - Dead reckoning track for ILS approach.
- ☐ Focus on ILS.

African Flight Procedure Programme (AFPP)

ILS classification (Ground Navaids)

- ☐ First digit:
 - I, II and III: ILS performance.
- ☐ Second digit:
 - **PA, B, C, D, E or T.**
 - Point along the RWY axis until which the LOC signal is consistent;
 - Letter T indicates RWY THR.
- ☐ Third digit:
 - **1, 2, 3 or 4**
 - Level of integrity and continuity of service.
- ☐ E.g: Cat. III. E.4

African Flight Procedure Programme (AFPP)

ILS standard conditions: Maximum aircraft dimensions

Aircraft category		Vertical distance (t) between the flight paths of the wheels and the GP antenna (m)
Н	30	3
A,B	60	6
C, D	65	7
D _L	80	8

African Flight Procedure Programme (AFPP)

ILS standard conditions

```
Maximum aircraft dimensions: Table above;
```

Cat. II flown with Flight Director;

Missed approach gradient : 2.5%;

ILS sector width : 210 m at landing threshold;

Glide path angle

Minimum : 2.5°Optimum : 3.0°

■ Maximum : 3.5° (3.0° for Cat. II & III

ILS Reference Datum height : 15 m (50 ft);

All obstacle referenced to the threshold elevation.

For Cat. II & III: no penetration of the Annex 14 inner approach, inner transitional and balked landing surfaces.

African Flight Procedure Programme (AFPP)

ILS basic elements

- □ ILS category of operation;
- ☐ ILS geometry:
 - **TLOC** sector width at THR;
 - Glide path elevation angle;
 - **Reference Datum Height (RDH);
 - Distance between LOC antenna and landing THR (measured).

RDH: Reference Datum Height

RDH:

RDH

- Height of GP plan over the threshold:
 - Optimum : 15 m;
 - Cat. I tolerance: ± 3 m;
 - Cat. II & III : + 3 m.

LOC parameters

Distance between LOC antenna and THR

LOC sector width: Standard value 210 m at THR

African Flight Procedure Programme (AFPP)

Understanding Height Loss

HL: maximum amount of height lost by aircraft performing the transition between final and standard climbing slope.

		Height Lo	oss Value	S
A/C Cat.	Pressure	e altimeter	Radio al	timeter
Cat.	M	Ft	M	ft
A	40	130	13	42 Misse
В	43	12	18	59
С	46	150	22	71
D	49	161	26	85
Н	35	115	8	25

- ☐ HL adjustment: HL must be adjusted in certain cases:
 - Airfield elevation > 900 m (2 953 ft):
 - HL value increased by 2% of the radio altimeter margin per 300 m (984 ft) airfield elevation.
 - [™]Glide path steep angle (> 3.2°):
 - HL value increased by 5% of the radio altimeter margin per 0.1° increase in GP (between 3.2° and 3.5°);
- ☐ Effect of temperature (T) on pressure altitudes:
 - Pressure altitude decreases with T.
 - **Very important in APV baro-VNAV.**

African Flight Procedure Programme (AFPP)

The precision segment

Final approach segment

Final approach segment

- Contains a fix or facility to check:
 Glide path elevation angle;
 Altimeter information;
 This check can be done at FAP.
 Outer marker or equivalent DME distance (tenth of NM);
 Fix tolerances on final segment:
 - Marker
 - Tolerance area: +/- 0.5NM.
 - **DME** distances:
 - in 1/10 of NM;
 - Tolerance area to be computed.

Obstacle survey in precision approach

African Flight Procedure Programme (AFPP)

□ Accurate DTM or charts at appropriate scales:
☞ 1/25 000 or 1/50 000;
☞ Contour lines;
☞ Isolated obstacles.
□ Allowance for vegetation;
□ Man-made obstacles (up-to-date);
□ Obstacles depicted on aerodrome charts (IFR or VFR).

Precision segment

- ☐ Origin: FAP;
- ☐ Termination (Whichever is lower):
 - Start of Final Missed approach or,
 - When missed approach surface reaches 300 m (984 ft) above threshold elevation.

African Flight Procedure Programme (AFPP)

Obstacle assessment in the precision segment

Coordinates system

Figure II-1-13. System of coordinates

- Based on statistical record of ILS approach;
- No more MOC BUT a maximum risk of collision between A/C and obstacles:
 - Overall safety target of 10⁻⁷ (risk of collision with obstacles);
 - Fits with obstacle clearance for final and initial/intermediate M.A.
- *Height loss/altimeter margin (HL) in case of missed approach:
 - OCH provided per aircraft category.
- Three methods for OCH computation:
 - Basic ILS surfaces (derived from Annex 14 surfaces);
 - Obstacle Assessment Surfaces (OAS);
 - Collision Risk Model (CRM), a computer program.

African Flight Procedure Programme (AFPP)

Basic ILS surfaces template

African Flight Procedure Programme (AFPP)

Basic ILS surfaces obstacle assessment

- □ Obstacle selection:
 - All obstacles which penetrate the Basic ILS surfaces are accounted;
 - Some obstacles might be exempted in specific cases (Table II-1-1-3):
 - GP antenna;
 - A/C taxiing or in holding bays.
- **□** OCHps calculation:

O.C.H.ps = Highest penetrating obstacle + Height Loss

African Flight Procedure Programme (AFPP)

Basic ILS surfaces obstacle assessment issues

- ☐ Inconveniences:
 - Many plane surfaces not adapted to ILS;
 - A lot of obstacles to process;
 - Pessimistic value for the OCA/H.
- ☐ Required for:
 - *Cat II and cat III operations (no obstacles penetrating "inner surfaces").

African Flight Procedure Programme (AFPP)

OAS and CRM methods

- Best methods for OCH computation:
 - Based on statistical data (survey of ILS app);
 - adapted to ILS and A/C.
- ☐ Advantages :
 - *Handle easily a lot of obstacles:
 - Computer assistance available.
 - **Accuracy: lowest value of OCH with CRM method.

African Flight Procedure Programme (AFPP)

OAS: From statistics to template

The probability to find an aircraft (in the precision segment) outside this volume is less than 10⁻⁷.

African Flight Procedure Programme (AFPP)

Obstacle Assessment Surfaces (OAS) template

OAS template

African Flight Procedure Programme (AFPP)

OAS template: W, X, Y, Z surfaces cut 300 m above THR

OAS Horizontal plane

OAS obstacle assessment

- ☐ Obstacle positions expressed in the ILS coordinates system;
- ☐ For each plane, z the height of the plane expressed using the OAS equation:

$$\Im z = A x + B y + C$$

- Where:
 - z: height above threshold of the plane at position (X,Y);
 - A, B & C: OAS constants depending on:
 - ✓ Localizer to threshold distance;
 - ✓ Glide path elevation angle;
 - ✓ Missed approach gradient of climb;
 - ✓ Aircraft specific dimensions (category).
- Ty is always counted positive.

OAS obstacle assessment: OAS constants

- ☐ Standard values provided in Doc. 8168, vol. 2:
 - C, D, E, C", D" and E" coordinates;
- ☐ A, B and C provided by the PANS-OPS software.
- Data tabulated for:
 - Distance LOC-THR between 2 000 m and 4 500 m (200 m);
 - Glide path angle between 2.5° and 3.5° (0.1° step).
- ☐ Missed approach climbing slope:
 - Between 2.5% and 5%;
 - FICAO PANS-OPS software provides A, B, C, C", D", E" and OCH.

OAS obstacle assessment: OAS constants adjustments

- PANS-OPS software adjusts constants:
 - For requested Aircraft category (from A to D₁);
 - None standard aircraft critical dimensions;
 - For requested RDH within (12 m to 18 m);
 - For requested missed approach slope:
 - **2.0 %, 2.5%, 3.0%, 4.0%, 5.0%.**
- ☐ For Cat. I LOC with course width greater than 210 m:
 - CRM method shall be used.

OAS obstacle assessment: OCH computation

African Flight Procedure Programme (AFPP)

OAS extension:

- TY and Z surfaces always limited to 300 m above THR;
- W and X surfaces MUST be extended to intermediate protection area plane surface.

OAS obstacle assessment: OCH computation

African Flight Procedure Programme (AFPP)

Start Of Climb (SOC) position

OAS obstacle assessment: OCH computation

African Flight Procedure Programme (AFPP)

- ☐ Main principles for OCH computation:
 - Draw extended OAS from OAS template;
 - Use of Height Loss (HL);
 - [™]No MOC;
 - Airspace divided into:
 - Final volume and
 - Missed approach volume.

OAS obstacle assessment: OCH computation

African Flight Procedure Programme (AFPP)

Airspace division in precision approach

OAS obstacle assessment: OCHps computation

African Flight Procedure Programme (AFPP)

OCHps computation process

- ☐ First step:
 - *List all obstacles penetrating OAS surfaces (for exemption, see basic ILS surfaces).
- Second step: Identify:
 - Obstacle in final volume;
 - Obstacle in missed approach volume.
- ☐Third step:
 - Compute OCH for each obstacle.
- □ OCH of precision segment (OCHps) is the highest value of all obstacle OCHs.

OAS obstacle assessment: OCHps computation

OAS obstacle assessment: OCHps computation

African Flight Procedure Programme (AFPP)

Obstacles IN or OUT OAS

In Y equation : $z_Y = A_{Y^X} xobst + B_{Y^X} yobst + C_Y$ z_Y represents the height of Y plane (in meter) at obstacle location

If z_{y} is greater than zobst \Rightarrow the obstacle is OUT of OAS

If z_{y} is less than zobst \Rightarrow the obstacle is IN the OAS

7

African Flight Procedure Programme (AFPP)

Approach obstacles if ho ≤ **(x - X_E) tan** α

Missed approach obstacles if ho $> (x - X_E) \tan \alpha$

African Flight Procedure Programme (AFPP)

Obstacle in Final (or in approach): IN OAS and below GP'

X_E: -900m

African Flight Procedure Programme (AFPP)

Obstacle in missed approach) if:

Obstacle in Missed approach if Z_{GP'} < Z_{obst}

GP' equation : $z_{GP'} = TAN (GPangle ^)_x (\chi - X_E)$

z_{GP}, represents the height of GP' plane at *obstacle* location

African Flight Procedure Programme (AFPP)

Obstacle in missed approach (hma) can be **converted** into obstacle in final approach (ha) to be comparable with obstacle **actually** in final

African Flight Procedure Programme (AFPP)

Conversion formula

$$h_a = \frac{h_{ma}(Cot(Z^{\circ}) + (Xobst - XE)}{Cot(Z^{\circ}) + Cot(GP \ angle^{\circ})}$$

Where:

That: height of the equivalent approach obstacle;

$$^{\circ}X_{E} = -900 \text{ m};$$

- X can be positive or negative (unit in always meter);
- □Always use the formula with the obstacle heights.

African Flight Procedure Programme (AFPP)

Computation of OCHps

- **□**Obstacles divided in:
 - Approach obstacles;
 - Missed approach obstacles:
 - Replaced by "equivalent approach obstacles "

O.C.H.ps = Highest obstacle (real or equivalent) + HL

African Flight Procedure Programme (AFPP)

OCHps computation if no penetrating obstacle

African Flight Procedure Programme (AFPP)

OCHps computation: obstacle in final

African Flight Procedure Programme (AFPP)

PA initial and intermediate segments

Initial approach segment

African Flight Procedure Programme (AFPP)

- ☐ General criteria apply, except for alignment and protection criteria:
 - The initial segment can be RNAV or RNP 1.
- ☐ Alignment with the intermediate segment (turn angle):
 - Maximum: 90°;
 - ©Optimum: 30°;
 - **For turn > 70°:**
 - Lead information (radial, bearing, radar vector or DME distance): 2 NM before the turn (1 NM for Cat. H).
 - **For turn > 90°:**
 - Reversal or racetrack procedure od DR procedure.

African Flight Procedure Programme (AFPP)

- ☐ Mandatory for ILS procedure:
 - With or without IF.
- ☐ Alignment with the final approach segment:
 - Not turn allowed at the FAP.
- Length:
 - [™]Optimum: 50 NM;
 - Maximum: IF not more than 25 NM from the LOC antenna;
 - **Minimum:**
 - Depends on the magnitude of the turn at the IF.

African Flight Procedure Programme (AFPP)

Minimum distance between IF and FAP (NM)

Angle of turn at IF	Cat. A -B	Cat. C-D
[0°;15°]	1.5	1.5
[16°;30°]	2.0	2.0
[31°;60°]	2.0	2.5
[61°;90°]	2.0	3.0

African Flight Procedure Programme (AFPP)

- ☐ Protection with IF:
 - The IF:
 - Total width: 5 NM
 - The end of intermediate segment
 - Total width:
 - Width of OAS X surfaces at the FAP;
 - Only primary area.

African Flight Procedure Programme (AFPP)

- ☐ Protection without IF:
 - Racetrack or reversal turn;
 - **Estimated width of LOC guidance:**
 - 15 NM from LOC antenna;
 - **+/-5 NM**;
 - Primary and secondary areas.
 - Width at FAP:
 - X surfaces width;
 - No more secondary area.
 - **Protection area:**
 - Intersection of:
 - LOC guidance protection area;
 - Racetrack /reversal primary protection area.

Intermediate with initial based on racetrack far from LOC

Intermediate Area connection with racetrack

- •The intermediate area extends 5 NM on each side at 15 NM from LOC and tapers uniformily to the width at FAP
- •Intermediate is divided into two equal part primary and secondary
- •When no IF the area extends to the far boundary of the reversal primary area
- § II-3-4-4 and § I-4-4-3 § I-4-4-4

Intermediate Area connection with reversal

African Flight Procedure Programme (AFPP)

Obstacle assessment extended surfaces

- ☐ W and X surfaces MUST be extended to intermediate protection area plane surface
- □ 150 m below FAP altitude
- **□** Protection:
 - Standard MOC: 150 m;
 - Some obstacles assessed twice:
 - for intermediate protection area;
 - for OAS extended surfaces.

Connection from OAS template to intermediate segment: Extented surfaces

Overlapping protection areas

Intermediate area / extended final surfaces

