

Content

- 1. General
- 2. Waypoint tolerances
- 3. The Total System Error (TSE)
- 4. Protection area width

General

- **□** Objectives:
 - FKnow how:
 - to calculate RNAV and RNP tolerances;
 - To protect the PBN segments for all navigation specifications.
- **□** PBN performance criteria:
 - Accuracy (TSE);
 - Integrity;
 - **Continuity.**

Fix tolerances

- ☐ The fix tolerance represents where A/C is assumed to be regarding the fix position and the ACCEPTABLE PROBABILITY;
- The tolerance addresses a 2 SD (standard deviation) value.

African Flight Procedure Programme (AFPP)

PDE: Path Definition Error **Lateral deviation** FTE: Flight Technical Error **NSE: Navigation System Error ATT: Along Track Tolerance True Position XTT: Cross Track Tolerance True Flight Path ATT NSE Estimated Flight Path** FTE **Defined Flight Path** PDE **Desired Flight Path Nominal Aircraft Position**

mme

African Flight Procedure Programme (AFPP)

Calculating the TSE

- ☐ TSE = Root Sum Square (RSS) of different errors (NSA, FTE, PDE, etc.).
- ☐ TSE defined for each navspec:
 - NSE depends on the system performance:
 - NSE= 0.08 NM for GNSS
 - NSE for VORDME or DME/DME vary
 - FTE is a fixed value per navigation specification:
 - For RNAV, FTE = ½ required navigation accuracy
 - For RNP ≥ 0.5, FTE = ½ RNP
 - For RNP \leq 0.5, FTE = 463 m (0.25 NM)
 - PDE corresponds to the system computation tolerance ST and is a fixed value 0.25 NM

African Flight Procedure Programme (AFPP)

Flight Technical Error (FTE)

- Ability to follow the defined path
 - FTE in manual mode (Pilot follows the deviation from the CDI)
 - FTE with the FD
 - FTE of the Autopilot
- ☐ Error depends on the flight phase (sensibility of the deviation indicator, AP)

Flight phase	Manual (NM)	Coupled					
	ivianuai (ivivi)	Flight Director (NM)	Autopilot (NM)				
Oceanic	2.0	0.5	0.25				
En-route	1.0	0.5	0.25				
Terminal	1.0	0.5	0.25				
Approach	0.5	0.25	0.125				

African Flight Procedure Programme (AFPP)

Navigation System Error (NSE)

- ☐ Difference between the estimated position and the real position;
- ☐ Takes into account:
 - Transmitted Signal error;
 - Position calculation error.

African Flight Procedure Programme (AFPP)

Path Definition Error (PDE)

□ Errors between the desired path and the defined path;
 □ Waypoint coordinates in WGS 84;
 □ Possible Error Source:

 ☞ Errors in the defined coordinates of the WPt;
 ☞ Misinterpretation of the source by the data base encoder;
 ☞ Errors induced by data resolution must also be considered.

 □ PDE is managed through a quality process and development methodology in data processing (coding process):

 ☞ DO 200A
 ☞ LOA Type 1 and 2

 □ The end user is the operator:

 ☞ He has to assess that adequate development methodology has been applied;

Crew procedures to check that what is encoded is what is published.

African Flight Procedure Programme (AFPP)

IMAL: <u>Integrity Monitoring Alarm Limit</u>

- ☐ IMAL allows AIRCREW to DETECT that the SIGNAL IN SPACE (NSE) is not achieving the navigation PERFORMANCE REQUIRED
- ☐ IMAL value depends on the GNSS MODE which corresponds to the PHASE OF FLIGHT

GNSS mode

African Flight Procedure Programme (AFPP)

Buffer Values (BV)

Phase of flight	BV for Cat. A to E (NM)	BV for Cat. H (NM)
En-route (> 30 NM from departure or destination ARP)	2.0	1.0
Terminal (STARs, Initial and intermediate Approaches within 30 NM to ARP; SIDs and missed approaches within 30 NM from ARP but more than 15 Nmfrom ARP)	1.0	0.7
Final Approach	0.5	0.35
Missed Approach and SIDs ≤ 15 NM ARP	0.5	0.35

African Flight Procedure Programme (AFPP)

Area Width (AW) calculations

- ☐ Semi area width is based on 3σ standard deviation
 - 2 σ value corresponds to XTT;
 - $\Im \sigma$ value corresponds to $^{1/2}$ A/W:

$$^{1/2}$$
 A/W = 1.5 XTT + BV

- **■** Why Buffer Value (BV)?
 - * to cater for BLUNDER ERRORS
 - To cater for TAIL OF DISTRIBUTION
- Buffer Value depends on:
 - **PHASE OF FLIGHT**
 - AIRCRAFT characteristic (helicopter or airplane)

Na	vigation specification	RNP	FTE	IMAL	ATT	XTT	BV	1/2AXY Africa	n Flight Procedure Programme (AFPP)
RNP4	En route	4	2		3.2	4	2	8	
RNP1	More than 30 Nm from ARP	1	0.5		0.8	1	2	0.5	
						·	_	3.5	
	< 30 Nm ARP	1	0.5		0.8	1	1	3.5 2.5	

1/2 AW= 1.5 x XTT + BV

RNP APPLICATION

RNP APCH

< 30 Nm ARP 0.5 8.0 2.5 FAF 0.3 0.25 0.24 0.3 1.45 0.25 0.24 MAPT 0.3 0.3 0.5 0.95 MA <15 NM 0.5

Navigation specification		RNP	FTE	IMAL	ATT	XTT	BV	1/2AW
RNAV5	En route		2.5	2	2.01	2.51	2	5.77

on area width

ght Procedure Programme (AFPP)

	Plus de 30 Nm ARP	1	2	1.6	2	2	5
RNAV2	< 30 Nm ARP	1	1	0.8	1	1	2.5
	SID <15 NM ARP	1	1	8.0	1	0.5	2
	greater than 30 Nm ARP	0.5	2	1	2	2	5
RNAV1	< 30 Nm ARP	0.5	1	8.0	1	1	2.5
	SID<15 NM ARP	0.5	1	0.8	1	0.5	2

RNAV APPLICATION
With GNSS sensor

1/2 AW= 1.5 x XTT + BV

17

Na	vigation specification	RNP	FTE	IMAL	ATT	XTT	BV	1/2AW
RNP4	En route	4	2		3.2	4	2	8
RNAV5	En route		2.5	2	2.01	2.51	2	5.77
RNP1	More than 30 Nm from ARP	1	0.5		0.8	1	2	3.5
	< 30 Nm ARP	1	0.5		0.8	1	1	2.5
	SID<15 NM ARP	1	0.5		0.8	1	0.5	2
RNAV2	Plus de 30 Nm ARP		1	2	1.6	2	2	5
	< 30 Nm ARP		1	1	0.8	1	1	2.5
	SID <15 NM ARP		1	1	0.8	1	0.5	2
RNAV1	greater than 30 Nm ARP		0.5	2	1.6	2	2	5
	< 30 Nm ARP		0.5	1	0.8	1	1	2.5
	SID<15 NM ARP		0.5	1	0.8	1	0.5	2
RNP APCH	< 30 Nm ARP	1	0.5		0.8	1	1	2.5
	FAF	0.3	0.25		0.24	0.3	1	1.45
	MAPT	0.3	0.25		0.24	0.3	0.5	0.95
	MA <15 NM	1	0.5		0.8	1	0.5	2

For <u>RNAV NAVIGATION SPECIFICATION</u>, values in the table are applicable for airplane and for <u>GNSS</u> sensor only

- ☐ Area Width global methodology:
 - Whatever the navigation application is, area width depends on two elements:
 - XTT
 - BV
 - Where NEITHER XTT NOR BV are changing:
 - Area width is a CORRIDOR
 - Where at least one of the two elements changes, to calculate the area width, three questions are to be answered:
 - Question 1 : AT THE LOCATION where XTT is changing which value is taken into account for area width calculation ?
 - Question 2 : AT THE LOCATION where BV is changing which value is taken into account for area width calculation ?
 - Question 3 : How to CONNECT the two areas ?

African Flight Procedure Programme (AFPP)

Area Width global methodology: Straight area

- ☐ Primary & secondary area apply:
 - Where no no change of flight phase nor XTT:
 - Area is a corridor

African Flight Procedure Programme (AFPP)

Area Width at the location where XTT changes:

- ☐ AT THE LOCATION where XTT is changing which value is taken into account for area width calculation?
 - First case:
 - When PRECEDING area width is LARGER than the SUBSEQUENT one.
 - Second case:
 - When PRECEDING area width is SMALLER than the SUBSEQUENT one.
 - What are the conditions that induce the change of XTT?
 - Change of value of RNP;
 - Change of accuracy for RNAV application.

African Flight Procedure Programme (AFPP)

Area Width at the location where XTT changes:

- First case: When PRECEDING accuracy value is LARGER than the SUBSEQUENT one:

 Assumption:
 - At the point where the change of RNP / accuracy is required, the RNP/ accuracy is achieved.
 - Conclusion and answer to the question :

AT the LOCATION where ACCURACY is changing, take the MOST ACCURATE so the SMALLEST XTT

Example:

- At FAF RNP changes from 1 to 0.3 NM
- For RNP application : XTT= RNP
 - $XTT_{FAF} = 0.3 NM$

African Flight Procedure Programme (AFPP)

Area Width at the location where BV changes:

☐ Calculation for the FAF:

The FAF, BV id changing from 1 to 0.5 NM

AT THE LOCATION where BV is changing, take the BV of the PRECEDING phase.

BV = 1 NM ^{1/2}AW = 1.5*0.3+1 = 1.45

