I SIGMET for Turbulence and Icing
H. Puempel, WMO

e (General Guidelines
e Useful sources of information
e Scientific background

e Feedback and continous improvement
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l Responsibility and Scope

* Meteorological Watch
Offices

 Regulations: ICAO
Annex III, WMO

Technical Regulations
C3.1.

e 24/7 Watch to be
maintained

P
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Area of Responsibility:
FIR
Regional Air
Navigation
Agreements

Supported by RSMC
(VAAC, TCAC)



. Use of warning messages

e SIGWX-Charts: WAFS responsibility,
intended for tlight planning (e.g. avoidance
of affected areas & levels), Fixed-time
prognostic charts, model-based, coarse
resolution

e SIGMET: Actual situation, based on model
data, observations (ground based, space
based, Pilot Reports), valid for specific time

M interval, development over time, tendency
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. Purpose of SIGMET

e Provided for flight planning and in-flight
information (uplink, VHF)

 Warning of actual risk (obs or fcst)

e (Clear delineation of risk area & levels,
movement, time, intensity of phenomena

e Creates common situational awareness for
air crew, operations control, ATM
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SIGMET-Hazards covered by this
presentation

e Severe Turbulence
e Severe mountain waves

e Severe Icing
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Causes of Turbulence

e Thermals

e Mechanical turbulence
e Convection

e (Clear-Air turbulence
e Shear

e Gravity waves
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. Mechanical (terrain-induced)
turbulence

e Typically caused by strong winds over
complex terrain
e Stochastic by nature

 May be accompanied by shear effects (gap
flows, pockets of stagnant air)

e Requires different pilot action than «typical»
wind shear situation

e Could be also addressed by aerodrome

warnings,
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Areal Distribution of topographically induced Turbulence

30.10.1999 afternoon flight
500 m x 500 m grid cells with less than

five measurements are disregarded.

calculation of turbulence are weighted with
their surrounding ones, in an attempt to
minimize statistical errors due to sparse
measurements.

06.11.1999

x 10 [m]

2.1 2.2 2.3 2.4 2.5

2.1 215 22 225 23
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. Thermal turbulence

e Rarely reaching the « severe » criterion
e Limited to the planetary bounday layer

e (over high topography, this could well be up
to 15.000 ft or higher!)

e In extreme cases, thermally driven flow
interacting with topography (gaps, cols)
could justify warnings
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. Convective Turbulence

 Normally covered by SIGMET for EMBD,
widespread CB /TS

e Strongest turbulence not automatically
related to highest WXR echos (echo-free
vault, outtlow boundaries, downdrafts
potentially channelled by topography

* Important area for user training
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« Clear Air Turbulence »

e Summarizes several related effects

e Unlikely to cause structural damage to

aircraft, but:

e Serious injuries to passengers and (cabin)

crew still a common problem

e Short-lived and patchy episodes
e Scientifically challenging

27/01/2011
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Mountain Wave Clouds in New England
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Mountain Wave turbulence

(Bob Sharman et al.)
27 ,

Fig. 1. Water vapor image from MODIS satellite, Feb. 27, 2004 at 0525 UTC. Mote the
distinct wave pattarn northeast of Alamosa, CO.
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In flight Icing cont.

* Icing affects lift (both on main wing and tail)
e Effect depends also on wing profile
e Some rear-mounted jet engines liable to

ingest 1ce removed from wings

e Tail 1icing often more critical than main wing
e Affects controls, maximum angle of attack
e Aircraft may not be certified to operate in

freezing drizzle conditions (drop size >50
mikrons)
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METHODS OF DETECTING
SEVERE AVIATION HAZARDS

e Early warning: SIGW X-forecasts from
WAFES, regional /high resolution models:
guidance for areas where hazards are likely

e Observations (IR, VIS, WV imagery,
AMDAR data, Weather Radar, Wind
profilers, surface obs, cloud observations)

e Pilot reports ( prompt ATC/ATM to ask
), Pilots 1n areas of suspected hazards)

M 27/01/2011
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. Gridded Products for Turbulence

 Now available from WAFS FTP service
e Useful to 1dentity potential risk areas

e Very high resolution , non-hydrostatic
models needed for detection of mesoscale
phenomena (gravity waves, intense shear,
interaction with convection /topography)

e Relatively high false alarm rates require
cross-check with observations

M 27/01/2011
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Turbulence detection by observations

* Space-Based:

— Identification of jet streams, jet streaks, Kelvin-
Helmoltz Instabilities, Divergence and
Deformation areas

— Localization of gravity waves (topographic and
convectively triggered)

— Localization of stratospheric intrusions,

indicating strong shear and and possible gravity
wave braking (GWB)
in WV imagery
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Deformation Zones as CAT
predictors

o -

19



Mod-Sey |

Turbulencel

Dol K S

27/01/2011



. Banding Along Mid-latitude Front

el |
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Extreme Turbulence Scenario

Environmental conditions: Extrerne
Turbulence § ‘I

Strong jet intersects:
Cold front with: .
Low top convection , _—
Extreme turbulence . B/ Ocean
possible
over and downwind from

. L Georgia
convection

Florida,

Severe
Turbulence °
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. Mountain waves

e Not limited to large or very high ranges
e (10001t hills may be enough)
e Trapped vs vertically propagating waves

e Breaking waves potential cause for extreme
turbulence

e Trapped waves typically « benign »

e In very strong, long MW danger of
overspeed by autopilot trying to hold Flight
Level
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Turbulence detection by observations

e Ground-based: Surface pressure drag as
indicator for GWB

— Severe downslope storms

— Banner clouds, « foehn walls » indicating
hydraulic jumps

— Doppler Radar /Lidar detection of severe
storms/shear/turbulence

— Radiosonde data (wind shear, Richardson
Number diagnostics)

— AMDAR wind data as above

27/01/2011 24



Scientific basis

Turbulence: Transition of kinetic energy

down the scales (-5/3 law)

Depending on Richardson Number , stability

over square of wind shear

wind shear

Model forecasts of |

« Self-elimination » , turbulencacts to reduce

low Ri becoming useful

* Local turbulence «

peaks » where sub-grid

scale processes decrease Ri-Number

27/01/2011
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I Trigger mechanisms

e Jet streaks , tropopause folding, stratospheric
intrusion (water vapor image!)

e Gravity waves caused by:
— Orography
— Vicinity of CB

— Geostrophic adjustment

p.
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UA286 Turbulence (28 Dec 97)
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l In Flight Icing

e Severity dependant on aircraft type, phase of
flight, duration of exposure

e Icing in CB covered by Convective SIGMET

e Still highly relevant for smaller, commuter
aircraft, but also Jet Airliners at risk (Fokker
70 accidents in Munich and Pau 1n recetn
years

 Highly relevant over high terrain, cold

climates
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Detection of Icing Potential

 Models: Icing products generated by many
NMS’s and 1nstitutions (CIP/FIP 1n US,

UKMO, Meteo France, DWD to name but a
few)

e Require complex model physics (ice phase,
preferably aerosol content, convection)
 Intensification of Icing Potential by

mesoscale processes (rainbands, complex
topography) ditficult to reproduce

27/01/2011
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Known strengths and weaknesses of
current algorithms

e Reasonable detection of hazard areas

 Tend to overforecasting affected area in some

models

e (Great difficulties in discerning between lgt/mod

and severe (resolution of liquid water content!)

* Drops size distribution not well modelled

e Projection of enhanced icing 1n mesoscale

phenomena to lowest resolvable scale

 Some models exaggerate « scavenging » of liquid

water by 1ce crystals

27/01/2011
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G.Isaac (Montreal):Comparison of
measured and forecast liquid water
contents
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. Detection of Icing Potential -Obs

e « Classical » Appleman —Mori from
Radiosondes — spacing and time gap often
too large to detect mesoscale bands

e Space-based: 1n the absence of cirrus above,
presence of ice crystals detectable by split-
window technique

* For low-level FZDZ surface obs very useful
 PIREPS!!!!
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Severe Icing

e Limited temperature range (typically - 10 to - 4 C)
e Liquid Water Content > 0.5 g/kg
e Large droplets present (>50 mikrons)

e No or at least little « scavenging » by ice crystals
unless compensated by massive vertical advection
of moisture!!!

e Local intensification by:

— Topography

— Banding

— Warm advection

— Lack of suitable condensation kernels

27/01/2011 37



l Acknowledgements

e Thanks to NOAA (G. Ellrod, R. Sharman,S.
Koch), P. Malcher (UIBK), KNMI, ZAMG,
UKMO

for their pioneering work and permission to
use training material!

Excellent modules in E and S to be found at:

http://www.meted.ucar.edu/topics_aviation.php
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