AICM-AIXM History and Overview (Dakar, Senegal, 3-5 October 2016)

George BALDEH

RO/AIM

Agenda Items 6a

AICM – the beginning

- EAD Feasibility Study (by "CAPdebis") 1993
 - "The exchange of static data in an electronic format is rare for ground based systems. Other than ARINC 424 format, which was developed according to the demands of FMS, a state of the art, commonly used standard format for the exchange of static data information [...] is not available."
- Need for aeronautical information conceptual model
 - Data model for the European AIS Database (EAD)
 - Basis for eAIP
 - Basis for aeronautical data exchange specification
 - Contribution to ICAO (AIS/MAP Divisional Meeting of 1998)
 - etc.

AICM – the beginning

- Aeronautical Information Conceptual Model (AICM)
 - October 1996 drafting group established
 - Based on
 - ICAO Annexes
 - "real" AIP
 - ARINC 424
 - Entity-Relationship methodology
- October 1997, AICM Edition 1.0
 - Aerodromes, heliports, runways, ...
 - Navaids, significant points, navigation systems, ...
 - Routes, usage restrictions, traffic flow restrictions (RAD), ...
 - SID/STAR/IAP/HOLDING, ...
 - Airspace, Services and Organisations, ...
 - AIS Documents AIP, AIC, SUP, NOTAM, ...

AICM current version - 4.0

AIXM – based on AICM

- Aeronautical Information Exchange Model (AIXM)
 - Requirements
 - AIP database update specification
 - Update/snapshot messages
 - Based on AICM
 - Non-proprietary format
 - Possibilities
 - Position based (example: ARINC 424)
 - Keyword based (example: ADEXP), etc.
- March 1998, first draft (MITRE support)
 - Initial approach 'SQL like' messages
- 1999 discovered the Extensible Markup Language (XML)
 - · Early adoption

AIXM - XML

- XML advantages
 - Industry standard
 - Non-proprietary format
 - Main stream in IT
 - Largely supported by COTS software
 - Set of schema languages
 - XML Schema has limitations? use Schematron!
 - Human and machine readable
 - Typical for the aviation domain
 - Examples: NOTAM, flight plan, MET messages ...
 - Emerging standards such as GML, SVG, etc.

AIXM – XML language for AIM

- XML Schema
- Vocabulary based on AICM
 - AIXM data types
 - Example: fire fighting category for aerodrome/heliport <codeCatFireAd> = {1, 2, 3, ... 9}
 - AIXM Features
 - Example: VOR <Vor>
 - AIXM Feature attributes
 - Example: VOR Frequency <valFreq>, working hours <Vtt> complex structure
- Grammar (database update mechanism)
 - AIXM-Update message type
 - "On ... at ..., the following VOR, RWY, ... will be introduced/changed/withdrawn as follows ..."
 - AIXM-Snapshot message type
 - "I have the following information about these VOR, AD, RWY ..."

AICM/AIXM - documentation

- Main resource: www.eurocontrol.int/ais/aixm
- AICM
 - Entity-relationship model reports and diagrams
 - AICM Manual (0.9) work in progress for AICM 4.0
 - Tutorials
 - EUROCONTROL (Web Based Training module in development)
 - Commercial companies
 - Mappings
 - ARINC 424 <-> AICM 3.3 (see EAD Web site)
 - AIP <-> AICM (not yet publicly available)
 - ...
 - FAA site: www.faa.gov/aixm

AICM/AIXM - documentation

- AIXM
 - XML Schema files
 - AIXM Primer
 - Tutorials
 - Sample files
 - Real examples from EAD
- AIXM Change Descriptions
 - 25 changes between versions 3.3 and 4.0

AICM/AIXM - Evolution

- Original goals
 - initially developed for EAD
 - requirement: fully compliant with ICAO
 - few European specific constructs (ex: FUA)
 - "globally applicable aeronautical data exchange specification, compliant with ICAO SARPS (Standards and Recommended Practices) and satisfying the needs for international aeronautical information dissemination of the ECAC States"

AICM/AIXM – Evolution

Current situation

- operational systems using AIXM and systems in the final development stage
 - Change requests
 - Need for stability
 - "AIP database update specification"
- potential AIXM users
 - (aggressive) changes requests
 - "AIXM should be extended to support aeronautical information services in general"
- xNOTAM major improvement for AIXM
 - Merge static and dynamic data in a single format
- Requests for compliance with GIS standards
 - ISO 19100 series
 - GML, WFS

AICM/AIXM – Evolution

- World-wide adoption of a common aeronautical data exchange specification
 - AIXM has a high potential
- Current objective
 - globally applicable aeronautical data exchange specification
 - compliant with ICAO SARPS
 - satisfying the needs for international aeronautical information dissemination of the stakeholder States
 - including temporary changes (NOTAM)
 - existing investments shall be protected by a full backwards compatibility model
 - a standard extension mechanism shall enable the use of AIXM for a wider spectrum of aeronautical information services applications.

Extensibility

- Enable additions to the format by stakeholders other than the designers
 - "Changing an XML format by creating subsequent versions is usually done by the entity that controls the format, while extensions are typically added by third parties"
- Increasingly necessary
 - have more data in the XML instances than is described by the AIXM schema and still have a valid document
 - advantages
 - increased adoption of AIXM, through applications for which it was not primarily designed
 - reduce pressure on the ACCB to include in the model data local constructs

ICAO DAKAR UNITING AVIATION Extensibility

AIXM and GML

- AIXM does not have a defined geometrical model
 - Descriptive approach "how the shape was built/defined"
 - For example, the shape of an airspace may be defined:
 - using a series of vertex or
 - using a series of vertex in which we intercalate references to pre-defined open polylines called 'geographical borders', such as State political borders or
 - using airspace aggregations: rather than defining a border for it, the airspace is declared as being the result of unions, subtractions and intersections of other airspace or
 - using 'same horizontal shape as other airspace' associations.
 - Other features have a simple point by point description, as it is the case for 'centrelines'
- Inside a database/application, such descriptions are usually converted into geometrical representations specific to that system (Oracle Spatial, ESRI, etc.)

AIXM and GML

- AIXM does not have a defined geometrical model
 - Descriptive approach "how the shape was built/defined"
 - For example, the shape of an airspace may be defined:
 - using a series of vertex or
 - using a series of vertex in which we intercalate references to pre-defined open polylines called 'geographical borders', such as State political borders or
 - using airspace aggregations: rather than defining a border for it, the airspace is declared as being the result of unions, subtractions and intersections of other airspace or
 - using 'same horizontal shape as other airspace' associations.
 - Other features have a simple point by point description, as it is the case for 'centrelines'
- Inside a database/application, such descriptions are usually converted into geometrical representations specific to that system (Oracle Spatial, ESRI, etc.)

AICM/AIXM 4.5

- Main intended changes
 - New model for obstacles
 - point, line polygon
 - compliant ICAO AMDT 33 to Annex 15
 - Revised model for SID/STAR/IAP procedures
 - RNAV procedures
 - TAA model
 - Other changes
 - · Oxygen services, APU units, etc.
 - Full application of the approved principles
 - Extensibility
- Intended publication date summer 2005

AIXM 5.0

 Main intended chall - Notificationse term

Urgent need for fully computer interpretable real-time updates

xNOTAM – example

Danger area activation – current NOTAM

(A1905/04 NOTAMN

- Q) LGGG/QRDCA/IV/BO/W/000/150/3648N02342E028
- A) LGGG
- B) 0411010600 C) 0412311300
- D) NOV 01 TIL DEC 31 DAILY 1600-1930
- E) LGD76 KARAVIA ISLANDS ACTIVATED RAC 5-1-9 REF.
- F) AMSL G) FL150)

ICAO DAKAR UNITING AVIATION

```
<AIXM-update effective="2004-11-01T06:00:00"
                                                                       (message type)
origin="GREECE NOF" created="2004-10-15T10:18:34">
 <Group><Changed>
                                                                         (update type)
      <Ase>
                                                                      (affected facility)
       <AseUid><!—Airspace Identifier -->
          <codeType>D</codeType> <codeId>LGD76</codeId>
                                                                       (vertical limits)
       </AseUid>
        <codeDistVerUpper>STD</codeDistVerUpper>
        <valDistVerUpper>150</valDistVerUpper>
        <uomDistVerUpper>FL</uomDistVerUpper>
        <codeDistVerLower>ALT</codeDistVerLower>
        <valDistVerLower>0</valDistVerLower>
        <uomDistVerLower>FT</uomDistVerLower>
                                                                           (condition)
        <codeOpsStatus>ACTIVE</codeOpsStatus>
                                                                      (activation time)
        <Att>
          <codeWorkHr>TIMSH</codeWorkHr>
          <Timsh><codeTimeRef>UTC</codeTimeRef>
           <dateValidWef>01-11</dateValidWef>
           <dateValidTil>31-12</dateValidTil>
           <codeDay>WD</codeDay>
           <timeWef>16:00</timeWef><timeTil>19:30</timeTil>
           </Timsh></Att></Ase>
                                                                        (is temporary)
        <TEMP until="2004-12-31T11:30:00" />
</Changed></Group></AIXM-update>
```

Conclusion

<u>AICM</u> = Aeronautical Information Contual Model

<u>AIXM</u> = data exchange specification based on AICM

AICM

- entity-relationship model
- based on ICAO Annexes, world-wide AIPs, ARINC 424, etc.

MXIA

- XML Schema
- Human and machine readable
 - Typical for the aviation domain
 - Examples: NOTAM, flight plan, MET messages ...

