

Boeing Air Traffic Service (ATS) Data Link Perspectives and Capabilities

Mike Matyas
SAT FIT/11
June 2016

Export of this technology is controlled under the United States Export Administration Regulations (EAR) (15 CFR 300-774). No Export License is required for the dissemination of the commercial information contained herein to non-US persons other than those from or in US government imposed embargoed / sanctioned countries identified in the Supplement 1 to Part 740 (Country Group E) of the EAR. However, an export license is required when dissemination to non-US persons from or in those embargoed / sanctioned countries. It is the responsibility of the individual in control of this data to abide by the U.S. export laws. Export Control Classification Number (ECCN): 7E994.

Contents

- ATS data link
 - Purposes
 - Benefits
 - Architecture
 - Applications
 - Infrastructure (networks and subnetworks)
 - Boeing capabilities
 - Performance-Based Communications and Surveillance (PBCS)
 - Post-implementation monitoring
 - Problem report investigation
 - Boeing participation

Key points are highlighted

Purposes

- ATS data link purposes
 - At least from Boeing's perspective...
 - Primary: Integrate avionics and ground automation to enable beneficial capabilities not possible with voice communications
 - For example, enable trajectory-based operations (TBO)
 - Departure Clearance (DCL) service now being deployed in domestic
 United States is an early form of TBO
 - Secondary: Supersede voice communications when and where appropriate
 - Enable communications via data link
 - For example, a climb clearance request and response
 - Enable surveillance via data link
 - For example, automated position reports

Benefits

- Increased capacity
 - Reduced controller workload in continental airspace
 - Reduced separation in oceanic, polar, and remote airspace
 - For example, "30/30" separation in Pacific, RLatSM in North Atlantic

- Improved efficiency
 - Decreased fuel consumption and/or time enroute
 - For example, increased availability of optimum altitudes, Dynamic Airborne Reroute Procedure (DARP) reroutes that take advantage of new winds and temperatures aloft forecasts

Benefits

- Enhanced safety
 - 787 operator in *Aviation Week*: "integration of [CPDLC] with the autoflight system... enhances safety"

- Navigation database validation avoids waypoint ambiguity
- Avionics route clearance loading prevents navigation errors caused by manual transcription

Architecture

- Data link may be divided into two parts
 - Applications
 - Functions which provide services to users
 - Infrastructure
 - Networks and subnetworks (links or media) which connect applications
- In other words, applications-over-infrastructure
 - Voice-over-IP (VoIP)
 - E-mail-over-WiFi
 - Facebook-over-4G LTE
 - FANS-over-Inmarsat Classic Aero SATCOM

- Application types
 - ATS Facilities Notification (AFN) / Context Management (CM)
 - Provides initial manual "log on" capability to flight crew, supports automated transfers of communications between ATS facilities
 - Automatic Dependent Surveillance Contract (ADS-C)
 - Allows ATS providers to establish "contracts" with avionics for delivery of single, periodic, and/or event-based reports
 - Provides position reporting, separation assurance, route
 conformance monitoring, and trajectory synchronization capabilities
 - Controller-Pilot Data Link Communications (CPDLC)
 - Provides pre-defined message elements for request and delivery of clearances and reports, including free-text messages
 - Most beneficial when integrated with Flight Management Computer (FMC) or equivalent navigation avionics to enable route clearance loading, navigation database validation, and similar capabilities

Application sets

- Future Air Navigation System (FANS)
 - Consists of FANS AFN, CPDLC, and ADS-C applications
 - Initially operational in South Pacific in 1995, now operational or planned in many areas worldwide
 - Normally FMC-integrated supports TBO and similar capabilities not possible with voice communications
 - Generic avionics implementation is called FANS-1/A
 - FANS-1 is Boeing's implementation, FANS-A is Airbus's implementation
 - "FANS-1/A+" adds CPDLC uplink message latency detection

• LINK 2000+

- Consists of LINK 2000+ CM and CPDLC applications
- Initially operational in Europe in 2009, but deployment is facing both operational and technical obstacles
 - Technical problems led multiple airlines to stop using LINK 2000+

- LINK 2000+ (continued)
 - Normally not FMC-integrated does not support TBO
 - Subset of Baseline 1 (B1) capability intended to reduce frequency congestion and controller workload, so limited CPDLC message set only replicates common voice phraseology
 - Low benefits (limited message set, no TBO) but high costs (large and complex requirements set and code base)
- [future] Baseline 2 (B2)
 - Consists of B2 CM, CPDLC, and ADS-C applications
 - CPDLC adds speed schedule and one-second required time of arrival (RTA) precision, ADS-C adds Extended Projected Profile (EPP) for trajectory synchronization
 - New services include 4-Dimensional Trajectory Data Link (4DTRAD)
 and Data Link Taxi (D-TAXI)
 - FMC-integrated supports TBO and similar capabilities not possible with voice communications

Capability comparison of application sets:

Ø BOEING

Air Traffic Services (ATS) Data Link Map

April 2016

Copyright © 2016 Boeing. All rights reserved.

Boeing capabilities

• FANS-1

 Boeing has made "FANS-1/A+" CPDLC uplink message latency detection available on all its airplane models

• LINK 2000+

- LINK 2000+ implementation in Communications Management Unit (CMU) avionics is stand-alone solution
 - Not integrated with FMC or equivalent navigation avionics no route clearance loading, navigation database validation, etc.

• FANS-2

- FANS-2 application 'superset' is integrated combination of FANS-1 and LINK 2000+ application sets
 - Enables seamless transfers between FANS and LINK 2000+ centers
 - Provides common flight crew interface
 - Integrated with FMC or equivalent navigation avionics

Boeing capabilities (continued)

	737NG/ 737MAX ¹	747-400 ²	747-8	757/767 ¹	777 ⁴	787/777X	MD-11
FANS-1	Yes ("+") Optional	Yes Optional	Yes ("+") Standard	Yes ("+") Optional	Yes ("+") Standard	Yes ("+") Standard	Yes ("+") Optional
	or		and	or	and	and	
LINK 2000+	Yes (CMU) Optional	No ³	Yes (FANS-2) Standard	Yes (CMU) Optional	Yes Optional	Yes (FANS-2) Optional	No ³

¹ FMC-based FANS-1 and CMU-based LINK 2000+ capabilities on 737NG/737MAX and 757/767 are mutually exclusive due to host system and flight crew interface differences

 Contact Boeing to discuss possible FANS interoperability testing opportunities with its avionics labs

² 747-400 may be upgraded with 747-8 FMC and CMU to gain "FANS-1/A+" and LINK 2000+ capabilities as part of FANS-2

³ Unless via third-party CMU Supplemental Type Certificate (STC)

⁴ 777 offers concurrent FANS-1 and LINK 2000+ capabilities, but they are not sufficiently integrated to be called FANS-2

747 Operation

- MCDU provides primary interface
 - ATC key provides access to ATS datalink functions
- EICAS provides ATC MESSAGE visual alerts
- MAWEA provides high-low chime aural alerts
- Older-design airplanes (737, 757, 767, and MD-11) are similar

787 Operation

- MFD, keypad, and cursor provide primary interface
- EICAS provides •ATC visual alerts and high-low chime aural alerts
- Large-format displays automatically show CPDLC uplink messages in primary field of view
- ACCEPT, CANCEL, and REJECT glareshield buttons permit rapid responses to CPDLC uplink messages
- Newer-design airplanes (777) are similar

FANS-2 Displays

- Common displays for FANS and LINK 2000+
 - Options unavailable with the smaller LINK 2000+ CPDLC message set are disabled

Networks

- Aircraft Communications Addressing and Reporting System (ACARS)
 - In use since late 1970s, now main network worldwide
 - Used by FANS ATS applications, also used by Aeronautical Operational Communications (AOC) applications
- Aeronautical Telecommunication Network (ATN)
 - Based on Open Systems Interconnection (OSI) reference model
 - In use since early 2000s, but only in Europe and only by LINK 2000+
 - Technical problems are apparent in design and implementation of multiple layers of protocol stack
- [future] Internet Protocol Suite (IPS)
 - IPS use is acknowledged as a strategic goal
 - Will move toward a simplified and cost-effective architecture
 - Will allow maximum flexibility and compatibility

Subnetworks

- Short-range, line-of-sight subnetworks
 - VHF Digital Link (VDL) Mode 0/A
 - Uses original "Plain Old" ACARS (POA) protocol
 - VDL Mode 2
 - For ACARS messages, uses ACARS over Aviation VHF Link Control (AVLC)
 (AOA) protocol
 - For ATN messages, uses ISO 8208 (ITU X.25) protocol
 - [future] AeroMACS
 - Based on IEEE 802.16 WiMAX
 - Will provide high-speed IP-oriented link for aircraft on airport surface

- Subnetworks (continued)
 - Long-range, beyond line-of-sight subnetworks
 - Inmarsat Classic Aero SATCOM
 - Iridium SATCOM
 - Provides polar coverage
 - HF Data Link (HFDL)
 - Provides polar coverage
 - Generally a last-choice subnetwork due to performance challenges
 - Inmarsat SwiftBroadband SATCOM
 - High-speed, IP-oriented
 - FAA Performance-based operations Aviation Rulemaking Committee (PARC) Communications Working Group (CWG) is currently evaluating the viability of FANS-over-SwiftBroadband, with promising results so far
 - [future] Iridium Certus (using Iridium NEXT constellation)
 - Will provide high-speed, IP-oriented link and polar coverage

Boeing capabilities

- Networks
 - All Boeing airplane models are capable of using the ACARS network
 - Most Boeing airplane models are capable of using the ATN network
- Subnetworks
 - All Boeing airplane models are capable of using VHF, SATCOM, and HF subnetworks
 - Typical subnetwork preference order: VHF (VDL Mode 2 then VDL Mode 0/A), then SATCOM (Inmarsat or Iridium), then HFDL
 - Newer avionics offer customization of subnetwork preferences, geographic regions, POA frequencies, AOA service providers, etc.
- Depending on the airplane model, some network and subnetwork capabilities are standard and some are optional

Architecture Diagram

Timeline

- Performance-Based Communication and Surveillance (PBCS)
 - PBCS is a concept for prescribing and complying with objective operational criteria for communication and surveillance performance
 - This modern performance-based approach is more effective than earlier technology-specific approaches
 - PBCS includes Required Communication Performance (RCP) and Required Surveillance Performance (RSP) specifications
 - RCP and RSP specifications include availability, integrity, and continuity requirements
 - Continuity "overdue time" requirement provides name; for example, RSP180 requires that 99.9% of ADS-C reports be delivered to ATS provider within 180 seconds

- PBCS (continued)
 - PBCS also includes post-implementation monitoring to assess performance and investigate problem reports
 - Regional groups perform this function, including:
 - South Atlantic (SAT) FANS Interoperability Team (FIT)
 - North Atlantic (NAT) Technology and Interoperability Group (TIG)
 - Formerly the Communications, Navigation, and Surveillance Group (CNSG)
 - European Data Link Services (DLS) Central Reporting Office (CRO)
 - Informal Pacific ATC Coordinating Group (IPACG) FIT
 - Informal South Pacific ATS Coordinating Group (ISPACG) FIT
 - FIT Asia

- PBCS post-implementation monitoring (continued)
 - ATS providers assess performance in their control areas

- PBCS post-implementation monitoring (continued)
 - Regional sub-groups investigate problem reports, including:
 - SAT Central FANS Reporting Agency (CFRA)
 - NAT Data Link Monitoring Agency (DLMA)
 - IPACG Central Reporting Agency (CRA)
 - ISPACG CRA
 - FIT Asia CRA
 - These sub-groups provide briefings at regional group meetings

PR 1611-GS

- Description: Unable to log on to KZAK
- Status: CLOSED / Type: AIR
- Analysis
 - Flight crew reported that they were unable to log on to KZAK
 - Message log analysis revealed that flight crew sent seven AFN contact messages with incorrect flight identifier and KZAK properly responded with negative (reason code 4) AFN acknowledgement messages
 - Flight crew eventually corrected their mistake and successfully logged on to KZAK

PR 1739-SN

- Description: Error messages when loading route clearance
- Status: OPEN
- Analysis:
 - Controller sent uM77 AT ISTEM PROCEED DIRECT TO SHARK
 - Flight crew reported receiving two error messages,
 DATABASE ACCESS ERROR and UNABLE TO UPDATE F-PLN
 - · Boeing has duplicated problem in MD-11 avionics lab
 - Caused by FMC incorrectly processing route clearance when existing route has Course-to-Altitude (CA) leg as missed approach final leg
 - Boeing to release MD-11 operator guidance for this issue

- PBCS post-implementation monitoring (continued)
 - Boeing provides NAT DLMA, IPACG CRA (for US airspace), ISPACG
 CRA, and FIT Asia CRA problem report investigation services
 - In that role, Boeing would welcome coordination with the SAT CFRA
 - Especially for avionics and network problems that occur across regions
 - As Boeing itself, Boeing offers to support SAT CFRA problem report investigations that involve Boeing airplanes
 - Partial list of closed problem reports against Boeing airplane models:

PR	System	Description	Status	Notes
1358-MM	777	777 "ack-n-toss" issue (ACARS avionics acknowledge receipt of FANS uplinks but do not deliver them to the FANS avionics)	CLOSED	CLOSED with availability of 777 AIMS-2 BPV17.1 software
1405-GS	787	787 loses SATCOM link after losing VHF Cat B link	CLOSED	CLOSED with availability of 787 CMF BP2.5 software
1480-SN	MD-11	MD-11 sends unexpected ADS-C lateral deviation report	CLOSED	CLOSED with availability of MD-11 FMC -922 software
1534-GS	787	787 does not respond to AFN uplink messages	CLOSED	CLOSED with availability of 787 CMF BP2.5 software
1585-GS	787	787 does not respond to ADS-C uplink messages	CLOSED	CLOSED with availability of 787 CMF BP2.5 software
1726-RP	747-8	747-8 Inmarsat Classic Aero SATCOM avionics issues	CLOSED	CLOSED with availability of Rockwell Collins SDU-2200 part number 822-2556-103
1760-GS	787	787 SATCOM avionics issues	CLOSED	CLOSED with availability of 787 CMF BP3 software
1798-GS	787	787 fails to send armed MAINTAINING [altitude] reports	CLOSED	CLOSED with availability of 787 CMF BP3 software
1943-RP	747-8	747-8 (or 747-400 with 747-8 FMC) AFN protocol errors	CLOSED	CLOSED with availability of 747-8 FMC BP3.1 software

Conclusion

- Boeing is a strong supporter of ATS data link and the benefits it provides
- Boeing is working to improve existing ATS data link technologies and procedures and to develop new ones
- Both as the CRA/DLMA for other regions and as Boeing itself, Boeing offers its assistance to the SAT FIT and SAT CFRA

Thank you

michael.matyas@boeing.com

