## Airfield Pavement Reconstruction Alternatives

ICAO ACR/PCR Workshop

Presented by: Harold Muniz

Airfield Pavement Engineer FAA Headquarter, AAS-110



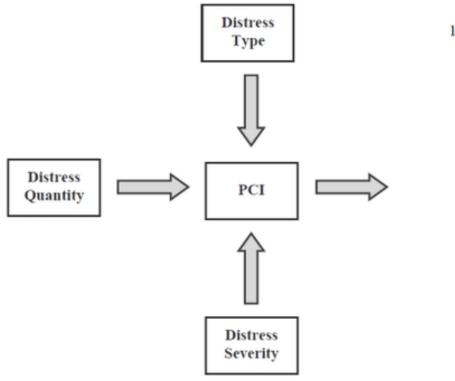
### **Overlays**

- Structural Overlays
  - Flexible Overlay of Flexible
  - Flexible Overlay of Rigid
  - Rigid Overlay of Rigid
    - Bonded (requires FAA Approval)
    - Unbonded
  - Rigid Overlay of Flexible
- Functional Overlays
- Alternate <u>Reconstruction</u> of Existing Pavement
  - PCC Rubblization
  - Full Depth Reclamation



### Required Inputs for Overlay Design

#### Existing Pavement Structure


- Layer Types and Thicknesses
- Modulus for all layers (may require user defined layers)
- Flexural strength of concrete
- Subgrade strength
- Existing Pavement Condition
  - Rigid Pavement requires Structural Condition Index (SCI)
  - Flexible requires engineering judgement

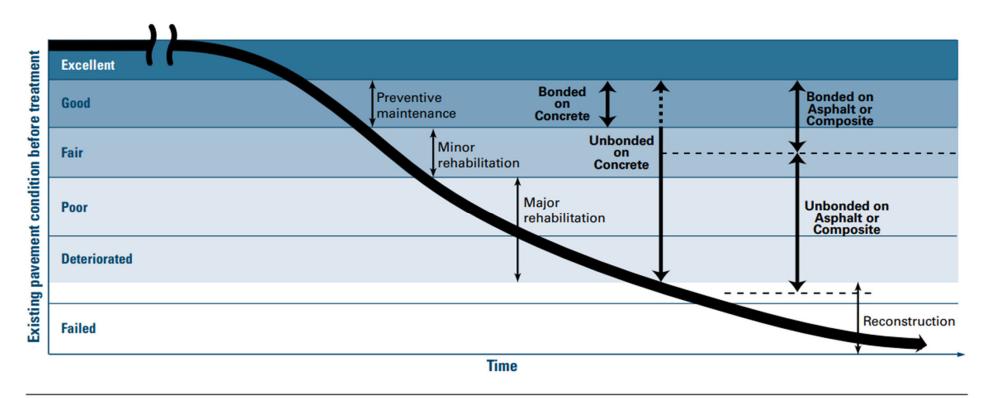
#### Traffic

- Airplane Type and Characteristics
- Annual Departures
- Annual Growth



#### **Pavement Condition Assessment**






#### Pavement Condition Assessment

- Structural Condition Index (SCI)- Used to express structural condition of existing rigid pavement.
  - Computed using only structural distresses
- SCI will always be greater than or equal to PCI
- SCI = 80 is the FAA definition of structural failure
  - 50% of panels in traffic area have a structural crack
- Pavement with SCI = 80 and few durability issues can appear to be in surprisingly good condition
  - · This is why we care about functional life
- Pavement with SCI > 80 but with durability issues can look severely failed



## Overlay - Existing Pavement Condition



**CP Tech Center** 



### Overlay Design Life (AC 150/5320-6G)

- Design overlays for a 20-year structural life from time of overlay
- A design life less than 20 years (minimum of 10 years) may be considered if:
  - The original pavement is more than 15 years old at the time of overlay, and;
  - The primary purpose of the overlay is functional rehabilitation of the pavement surface (i.e.) where the underlying pavement retains considerable structural integrity.
- Document and support the design life used in the engineer's report



#### HMA Overlay HMA

- Nonstructural Asphalt Overlays correct functional problems such as restoring the crown, correcting longitudinal profile, and/or improving skid resistance.
  - Improve surface characteristics
  - Minimum overlay thickness is dependent on gradation (no calculation required)
  - Consider minimum construction thicknesses for the P401/P403 150/5370-10H
  - Leaving less than 2" of AC pavement can be problematic
- Structural Overlay Asphalt Overlay consider when additional capacity and is needed. Can also correct functional problems.
  - Consider impacts of increased thickness
  - 3" minimum overlay thickness
- An interlayer placed between the existing pavement and the overlay to improve overlay performance

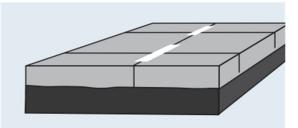


#### HMA Overlay Over PCC

- Generally used to slow rate of deterioration of the rigid layer with signs of some structural distress.
- Good candidates have an SCI <100 and >80
- Can be used to strength pavement to accept heavier aircraft.
- FAA requires a minimum 3-inch HMA overlay on PCC
  - Thin overlays have a tendency to delaminate as they deteriorate
  - Need to consider minimum P-401 lift thickness guidance
- FAARFIELD is trying to protect PCC from falling below SCI of 40 on aggregate base, 57 on stabilized base
  - FAARFIELD does not consider reflective cracking, delamination, or other deterioration in computed structural life
  - Often overlay functional life is significantly less than 20 years, especially when it is thin
  - Bond is the #1 concern; crack maintenance is the 2<sup>nd</sup> concern that airports must consider when selecting an HMA overlay of PCC



#### Rigid Overlay


- Bonded Overlay considered when there is a need to increase capacity
  of existing pavement to support additional aircraft.
  - Layers are assumed to act as one monolithic layer
  - Underlying pavement should be in good condition
  - Not very common
  - Require FAA approval
- Unbonded Overlays major rehabilitation effort restores/increases a pavements structural and functional life
  - New PCC acts independent from base layer
  - No extensive pre-overlay repairs generally required
  - Bond-breaker may be asphalt, geosythentic, or choke stone
  - FAARFIELD iterates overlay thickness until it finds a design thickness that produces SCI = 80 for the overlay at the end of the 20-year design life



#### Rigid Pavement Over Asphalt

- Uses same basic design methods as new Rigid Design
  - Allows HMA surface modulus value to be used under PCC instead of stabilized base modulus
- Overlay will design until a CDF of 1.0 is reached, or minimum thickness is reached
  - For overlays minimum thickness of 5 inches is allowed
- Poor drainage can cause stripping

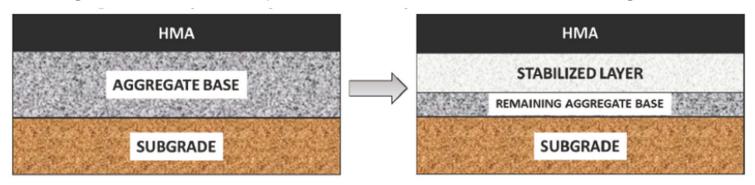
**Unbonded Rigid over Asphalt** 







### FAA Southern Region PCC Overlay


| State / Year   | Airport                       | RW / TW / Apron                              |
|----------------|-------------------------------|----------------------------------------------|
| Florida        |                               |                                              |
| 1996           | New Smyrna Beach (1)          | TW & Apron, 3.5-inches (or less), fibers     |
| 2003           | Fernandina Beach              | RW (6-in) & TW (5-in)                        |
| 2006           | Williston                     | RW (5-in, UBOA & 4-in, UBOC)                 |
| Georgia        |                               |                                              |
| 1997           | Moody AFB                     | 6000' of RW used UBOA, 1000' used UBOC       |
| 2008           | Cobb County                   | Runway (7-in)                                |
| 2011           | Augusta Regional              | Runway 17-35 (14-in)                         |
| North Carolina |                               |                                              |
| 2016           | Wilmington International      | N. GA Apron (9-in, UBOC)                     |
| South Carolina |                               |                                              |
| 2004           | Williamsburg County           | Apron (5-in)                                 |
| 2008           | Marion County                 | Apron (5-in)                                 |
| 2009           | Lancaster County              | Runway (7.5-in)                              |
| 2009           | Charleston Executive          | Runway (11-in, UBOC)                         |
| 2011           | Berkeley County               | Runway (9-in)                                |
| 2012           | Laurens County                | Runway (5-in) & Taxiway                      |
| 2014 - 18      | Greenwood County              | Runway (5-in) & Taxiway                      |
| 2018           | Grand Strand (N Myrtle Beach) | Runway (7.5-in)                              |
| 2019           | Darlington County             | Runway (7-in)                                |
| 2024           | Lexington County              | TW A (6-in)                                  |
| 2024           | Conway                        | RW (5-in)                                    |
| 2024           | Aiken Regional                | RW (6-in)                                    |
| Tennessee      |                               |                                              |
| 2000           | Savannah-Hardin County (2)    | Runway (4-in, fiber reinforced concrete mix) |
| 2020           | Jamestown Municipal           | Runway (5-in)                                |





### Full Depth Reclamation of In-place HMA

- Existing HMA, base, subbase layers pulverized and mixed to create a homogeneous base material
  - May include stabilization to create construction platform, or improve modulus
    - Fly ash, Portland cement, emulsified or foamed asphalt
  - May include blending of virgin aggregate to control gradation
  - Lab testing should be completed to assess material strength





### Full Depth Reclamation of In-place HMA

- Must Determine;
  - · Existing pavement profile
  - Depth of pulverization and mixing
  - Quality and gradation of base material
  - Extent of stabilization (if required)
- Design in FAARFIELD as User Defined Layer
  - Modulus can range from 25,000 psi to 500,000 psi depending on geotechnical results
  - For airports serving aircraft less than 30,000 lbs can usually place new surface directly on FDR
  - For airports serving aircraft over 30,000 lbs a base material may be required
  - FAA approval is required for use at airports serving aircraft over 60,000 lbs
- FDR is specified using **P-207** (AC 150/5370-10H)



### Full Depth Reclamation of In-place HMA

- Porter County Regional Airport
- Completed in 2, 8-week phases
- FDR accomplished on Rwy & Twy
- Approx. 10" in depth
- Cement Stabilization





#### PCC Rubblization or Crack and Seat

- Both methods remove the structural capacity of the PCC to prevent reflecting cracking.
  - Rubblization is the most common method, Crack and Seat has faded in popularity
- Design in FAARFIELD as a User Defined Layer
  - Modulus is defined based on PCC thickness.
    - 6-8 inches: E = 100,000 135,000 psi
    - 8-14 inches: E = 135,000 235,000 psi
    - Over 14 inches E = 235,000 400,000 psi
  - Other moduli can be select with proper analysis in engineer's report
- If performing Rubblization or Crack and Seat refer to EB-66
  - P-215 is included in EB-66 as a standard specification



#### PCC Rubblization or Crack and Seat







#### HMA Overlays of FDR or Rubblized PCC

- Design process is similar to HMA overlay of Flexible Pavement
  - FDR or Rubblized layer modeled as User Defined Layer
  - Modulus set based on engineer's analysis
  - Thickness set based on existing pavement thicknesses
    - Remember in FDR your final thickness may be different depending on compaction or introduction of virgin aggregates
- FAARFIELD will design overlay thickness
  - With FDR you may be able to balance modulus with overlay thickness if you ensure the material can achieve the modulus you design for
- <u>Don't forget that neither FDR or Rubblization can replace stabilized base if required (without FAA approval)</u>



#### PCC Overlay of FDR or Rubblized PCC

- Model in FAARFIELD as a New PCC Pavement
- FDR or Rubblized PCC modeled as User Defined layer using thickness and modulus determined from geotechnical investigation
- For PCC pavement it is easier to justify Rubblization or FDR in place of stabilized base
  - Can Rubblized concrete achieve similar strengths to CBR 100 material?
  - Can FDR be stabilized enough to achieve modulus similar to stabilized base?
- If you are going to propose rubblization or FDR make sure you have done your homework:
  - Discuss the option during development of design scope and fee. Don't wait until preliminary design to start, you will not have the scope or budget to do it right!!!!



#### Review

- Evolution of Airfield Pavement
- Concepts & Design Considerations
- Materials & Specifications
  - Aggregate Layers
  - Stabilized Materials
  - Frost Consideration
- Reconstruction Alternatives
  - Overlays
  - Alternative Methods for Existing Pavements



# **QUESTIONS?**

Harold Muniz, Airfield Engineer harold.muniz-ruiz@faa.gov (202) 267-5190

