Regional Seminar on MMEL/MEL and Special Operations

[Airbus Amber]

Organized by ICAO Regional Office for Western and Central Africa (WACAF)

Dakar - Senegal - from 30 June to 5 July 2025

Approach Guidance Mode

Julien BERNAGE, AIRBUS Approach and Navigation Flight Ops specialist

#1

A LITTLE BIT OF HISTORY

Up to 1970's- ILS and NAVAIDs era

DME: Distance Measurement Equipment VOR: VHF Omni Range

Conventional Non Precision Approach

Lateral trajectory
 Using VOR and DME raw data to follow the entended trajectory

Procedure:

Overfly CHE
Outbound CHE Radial 25°
at 9NM from CHE turn left
Intercept Inbound CHE radial 190°

Conventional Non Precision Approach

Vertical

Obstacle Clearance on Conventional

Dive and Drive technic

1980's - The Flight Management System and Inertial Reference System

FMS+IRS: revolution in the cockpit

- A/C position and Navigation Display
 Map with Flight Plan and A/C symbol
- RNAV(area navigation) concept
 Waypoints in coordinate
- Navigation Database
 Storage of procedures and Waypoints
- Lateral FPLN and guidance
 Approach coded in Nav DataBase, selection
- Vertical FPLN and Guidance in Barometric

RNAV: aRea NAVigation

RNAV System

Onboard Landing System FINAL APP

FMS provides a guidance along a coded and defined lateral and vertical profile

But the vertical profile is **BAROMETRIC**

GPS □ Better quality in position but GPS altitude not used

Conventional Approach flown in RNAV

Conventional flown with RNAV principle

□ A/C flows what is coded in NDB with current position and no more raw data

Conventional Approach flown in RNAV

Conventional Approach flown in RNAV

AC 20-130 / AC 20-138

GPS considered as equivalent to NAVAIDS

If GPS PRIMARY No need to monitor RAW DATA

If GPS PRIMARY LOST

RAW DATA monitoring required

Barometric Vertical profile: From Dive & Drive to CDFA

1990's - The GNSS - Global Navigation Satellite System

Bring precision and integrity on position

- PBN concept
 the Navigation Performance
- RNAV(GNSS) / RNP APCH

• RNAV(RNP) / RNP AR

Conventional Approach to RNAV Approach

- •RNAV(GNSS) approaches instead of conventional approaches
- •PBN concept for the lateral part:
- -RNP value of 0.3NM in straight final
- –RNP Value of 1NM in Initial, Intermediate and Missed Approach

RNP APCH / RNAV(GNSS) difference of minima

Change: WP, HP

Obstacle Clearance on RNP LNAV straight-in (less 5°)

Obstacle Clearance on RNP LNAV/VNAV

RNAV(RNP) / RNP AR

- Turn after the FAF on terrain challenging airports
- Low RNP value down to 0.1NM
- Reduced margins on protection areas

AR: Authorisation Required

Differential GPS concept

Augmentation of the Accuracy and Integrity

GPS augmented position due to reference stations

Vertical **GEOMETRICAL**

2 solutions:

GBAS ☐ GLS airbus solution

GPS: Global Positioning System

GBAS: Ground Based Augmentation System SBAS: Satelite Based Augmentation System

GBAS Landing System: GLS

GLS: Data transmitted to the A/C

MMR: Multi-Mode Receiver

- GPS augmented position by VHF
- Final Approach Segment data by VHF

Anchor point coordinate

Course

Slope

MMR computes a virtual beam

- •Flown in G/S | LOC
- FMS not needed manual tuning possible

GBAS on charts: GLS approach

Charted as GLS

- Angular protection same as ILS
- Geometric vertical guidance
- CAT I, CAT II available, CAT III under study

GLS approaches

- Operational (with dot: charts published)
- Planned Installations
- Special Category, S-CAT I (with dot: charts published)
 - Prototype/Research (with dot: actively transmitting)

- One station for all runways with different channel
- Customisation
 - Displaced Threshold
 - Various slope
- CAT I autoland capability
 available on A380, 350, 330 and 320
- CAT II autoland available on A320
- CAT III autoland Under study

Satellite Based Augmentation System

- Wide Area Network of reference stations
- Transmission of the data
 via geostationary satellite
- A/C system computes a virtual beam

Angular geometric guidance

Data transmitted to the A/C

- GPS augmented position by geostationary satellite
- Final Approach Segment data in NDB

Anchor point coordinate

Course

Slope

MMR computes a virtual beam

- Flown in G/S | LOC
- FMS needed (only for FAS data delivery)

SBAS on charts: LPV minima

- RNP with LPV minima
- RNP(GNSS) Approach BUT
 - Angular protection (in addition to linear) same as ILS
 - Geometric vertical guidance
 - Minima down to 200 ft (CAT I)

RNP APCH with LPV minima

- Equivalent to CAT I
- Customisation (as GLS): Displaced Threshold, Various slope
 - No specific on-ground station needed
- Need to be in an SBAS area (in US with WAAS, in Europe with EGNOS)
- SLS CAT I Autoland under study (certification planned in 2026 on A350)

ICAO APPROACH CLASSIFICATION DRIGHTSATTON DE L'AVIATTON CHIENTERNATTIONALE MERNATIONAL CIVIL MINTON ORGANIZATION

ICAO classification (before modification)

NPA Non Precision Approach **APV** Approach with Vertical Guidance RNAV(GNSS) **RNAV(GNSS)** RNAV(RNP) Conventional **VOR/DME** SAAAR NDB LOC only **LNAV/VNAV LNAV RNP 0.XX**

PAPrecision Approach

Conventional ILS MLS

CAT II
CAT III A B C

ICAO classification

Chart Naming changes for PBN

•ICAO Circular 336 transition from RNAV to RNP approach chart identification

•Not applicable for all states: USA and Canada will never change and keep old naming

We will have to live with 2 different charting names for the same operation

Chart Naming changes for PBN: RNAV(GNSS) □ RNP

Chart naming change ICAO circular 336

AIRBUS

Chart Naming changes for PBN: RNAV(RNP) □ RNP(AR)

Chart naming change ICAO circular 336

3D Published Approaches

3D vs 2D Published Approaches

Visual Published Approaches

VISUAL APPROACH Approach performed Visually VISUAL CIRCLE TO LAND **RNAV Visual** RNP (VPT) **VPT** after conventional proc

RNP A BWY 05 VPT Merignac BORDEAUX Aguitaine APP TWR Merignac GND Merignac APP Aquitaine INFO 129.875 BW 1 and 2 126.73 ATC 118.3 121.9 131.155 121.2 ATC 120.575 HO 121.73 ATC 119.275 BF 1 and 2 RNAV FAT 045° THR Elev 160 AD Elev 166 TL ATC TA 5000 4.6nm W000 40 R162 W001 00 W000 50 W000 30 ° W000 20 Cozes lege 2 R247A Blayais-Brau Et St Louis 1500 GND-2500 GND MON-FRI Camp De Souge Blavais-Braud 3500 (BTN 2000 and EXC HOL:08-17 3500 by NOTAM) **ETPAR** MAX 220kt R247B Camp De Souge MISAP: 4000 H24 MISAP: RNP 1.0 Camp De Bussac¹⁰ 3000 Absence ATS: BD057 Carcans PROC prohibited RNP 1.0 NOTAM Legend **VAGNA** ►►► Visual PROC Local QNH only 16.4 Warning PROC must be flown only with 4 ground visual reference when reaching Visual Fix FD05A VAGNA NA 4.6nm RNP with Visual Manoeuvring BD05R on Prescribed Track MAX 220kt **RNP 1.0** 3000 GND-FL195 H24 BD05D \ MAX 200kt **BOCEP** Reserved for Operators Fly-over point for HP 4000 holding an approval RNP 1.0 **RNP 1.0** FD05A MAX 185kt EXC FNA: RNP 1.0 MAX 200kt 1041 ARP RNP 1.0 BD05B Based on 30nm MAX 185kt Cazaux RNAV holding functionality required 1000 GND-FL195

1FD2 A/THR

>020-

Approach guidance mode

Automatic selection by the FMS

| VOR I NEW 32L | Singresc PP | TWP| GND | CLE (07) ATS | CLE (07)

 \rightarrow

APPR

Guidance Mode

The FMS will propose the best available approach guidance mode

Many Charts for straight approaches

ILS Approach

GLS Approach

RNP Approach

RNP Approach LNAV/VNAV LNAV

VOR Approach NDB Approach

Common HMI Based on ILS

ILS

ILS Approach

GLS Approach

RNP Approach LPV

RNP Approach LNAV/VNAV LNAV

VOR Approach NDB Approach

ILS = approx 83% of approaches

Propose the same pilot task than ILS (cognitive, flying technics)

xLS Principle

•A/C Position

A/C Altitude

Final Approach Segment Data

Anchor point coordinate

Course

Slope

MMR Computes a Virtual beam

Alt

Same Architecture for Display and Guidance

«x»LS

= Approach Guidance Mode

ILS

Provide guidance to fly all the types of straight approaches

Difference between various xLS modes is **the source** used for the deviations

xLS Guidance Mode availability

Approach type (Charts)	Approach Guidance Mode			
ILS (LOC + G/S data)	ILS			
GLS (GBAS)	Mix LOC / FLS			
RNP LPV (SBAS)	GLS			
LOC ILS G/S OUT (LOC + Baro advisory)	SLS			
RNP LNAV/VNAV (GPS + Baro Mandatory)				
RNP LNAV (GPS + Baro advisory)				
VOR (VOR or GPS + Baro advisory)	FLS			
NDB (NDB or GPS + Baro advisory)				
RNP AR (GPS + Baro Mandatory)	No xLS			
Visual procedure (all advisory)	No xLS			

Curved approaches

FINAL APP availability

Approach type (Charts)	Approach Guidance Mode
ILS (LOC + G/S data)	No FINAL APP
GLS (GBAS)	No FINAL APP
RNP LPV (SBAS)	No FINAL APP
LOC ILS G/S OUT (LOC + Baro advisory)	No FINAL APP
RNP LNAV/VNAV (GPS + Baro Mandatory)	
RNP LNAV (GPS + Baro advisory)	
VOR (VOR or GPS + Baro advisory)	FINAL APP
NDB (NDB or GPS + Baro advisory)	
RNP AR (GPS + Baro Mandatory)	FINAL APP
Visual procedure with Prescribed Track (all advisory)	FINAL APP

FINAL APP / NAV : Linear guidance

•**HPath law:** Objective is Lateral deviation = 0NM

[Airbus Amber]

[Airbus Amber]

FINAL APP / NAV : Linear guidance

•**HPath law:** Objective is Lateral deviation = 0NM

Approach for pilot tool in Airbus WIN

https://airbus-win.com/guidance-modes/

Cross Reference Table

CROSS-REFERENCE TABLE

This table provides Guidance Modes that may be used depending on the Approach Type.

	Guidance Modes per Approach Type					
	LOC G/S	F-LOC F-G/S	FINAL APP	LOC FPA or LOC B/C FPA ≪	NAV FPA	TRK FPA
ILS / GLS ≪	Refer to <u>APPR using LOC</u> <u>G/S</u>	N/A	N/A	N/A	N/A	N/A
LOC ONLY ILS G/S OUT LOC B/C ≪	N/A	Refer to APPR using LOC F-G/S or LOC B/C F-G/S (1)	N/A	Refer to <u>APPR using FPA</u> <u>Guidance</u>	N/A	N/A
RNP or RNAV(GNSS) with LNAV/VNAV minima	N/A	Refer to APPR using F-LOC F-G/S (1)	Refer to <u>APPR using FINAL</u> <u>APP (1)</u>	N/A	Not Authorized	Not Authorized
RNP or RNAV(GNSS) with LNAV minima	N/A	Refer to APPR using F-LOC F-G/S (1)	Refer to <u>APPR using FINAL</u> <u>APP (1)</u>	N/A	Refer to <u>APPR using FPA</u> <u>Guidance</u>	Not Authorized
RNP or RNAV(GNSS) with LPV minima (with SLS ♂)	Refer to <u>APPR using LOC</u> <u>G/S</u>	Not Authorized	Not Authorized	N/A	Not Authorized	Not Authorized
RNP or RNAV(GNSS) with LP minima (with SLS ♂)	Not Authorized	Not Authorized	Not Authorized	Refer to <u>APPR using FPA</u> <u>Guidance</u>	Not Authorized	Not Authorized
VOR VOR-DME NDB NDB-DME	N/A	Refer to <u>APPR using F-LOC</u> F-G/S (1)	Refer to <u>APPR using FINAL</u> <u>APP (1)</u>	N/A	Refer to <u>APPR using FPA</u> <u>Guidance</u>	Refer to <u>APPR using FPA</u> <u>Guidance</u>
RNP(AR) or RNAV(RNP)	N/A	Not Authorized	Refer to <u>APPR using FINAL</u> <u>APP for RNAV(RNP)</u>	N/A	Not Authorized	Not Authorized

^{1.} The FLS (F-LOC F-G/S) is the recommended guidance mode for this type of approach.

For Visual Approach, Refer to Visual Approach.

For Circling Approach, Refer to Circling Approach.

Note: The names of the approach and departure charts evolve. For convenience purposes the Cross-Reference table provides both names.

RNP is equivalent to RNAV(GNSS).

RNP(AR) is equivalent to RNAV(RNP).

--- END ---

Approach Guidance mode proposed by the system

Approach type (Charts)	FMS Selection	Approach Guidance Mode		
ILS	□ILS09L-Z	ILS		
LOC ILS G/S OUT	□LOC09L-Y □ILS09L-Z	Mix LOC / FLS		
GLS	□GLS09L-Z	GLS		
RNP LPV	□RNV09L-Z (LPV)	SLS		
RNP LNAV/VNAV RNP LNAV VOR NDB	□RNV09L-Z □RNV09L-Z □VOR09L-Z □NDB09L-Z	FLS (FINAL APP on Old A/C)		
RNP AR	□RNV09L-Z	FINAL APP		
Miscellaneous RNP VPT Specific geometry Visual procedures		FINAL APP		

- 1 FMS in GPS PRIMARY
- 1 MCDU
- 1 FD
- 1 PFD
- 1 ND of PF side
- Both FCU channel

e.g. RNP APCH

External conditions

QNH setting

temperature correction

Wind limitation

Importance of QNH setting

FINAL APP FLS: **Barometric vertical guidance** ⇒ sensitive to QNH setting if wrong QNH setting, wrong guidance, wrong minima

ILS, GLS, SLS : Geometric guidance ⇒ not sensitive to QNH setting BUT wrong minima in Baro, wrong altimeter display

QNH Monitoring FWC+EIS std

Provide a safety net regarding Wrong QNH setting threat

External conditions

QNH setting

temperature correction

Wind limitation

External conditions

Engagement conditions

The crew must pay attention to be located at the right place for final approach mode engagement

Example: FINAL APP capture zone

xLS capture

External conditions

Engagement conditions

Deviations Monitoring

Lateral deviation monitoring for xLS

Laterally: Monitor F-LOC deviation

Crew Standard Callout: ½ dot

Go Around: 1 dot in RNP

Vertical deviation monitoring for xLS

Vertically: Monitor G/S / F-G/S deviation

Crew Standard Callout: ½ dot

Go Around: 1/2 dot in RNP LNAV/VNAV

Altitude checks at FAF and SDF

Deviation monitoring for FINAL APP in RNP APCH

Laterally : Monitor XTK

Crew Standard Callout: "Cross Track" when XTK appears

Go Around: XTK reach 0.3NM

Deviation monitoring for FINAL APP / APP-DES | NAV in RNP APCH LNAV/VNAV

Vertically: Monitor V/DEV

Crew Standard Callout: V/DEV 1/2 dot below

Go Around: $V/DEV \frac{3}{4} dot = 75ft$

Deviation monitoring for FINAL APP / APP-DES | NAV in RNP AR

Deviation monitoring for FINAL APP / APP-DES | NAV in RNP AR

Vertically: Monitor V/DEV

Crew Standard Callout: V/DEV 1/2 dot below

Go Around: $V/DEV \frac{3}{4} dot = 75ft$ excess dev on A350 / A380 batch 7

External conditions

Engagement conditions

Deviations Monitoring

Management of degraded Navigation

Navigation performance and Approaches

GPS/NAV PRIMARY LOST

- → RNP AR capability lost (specific design on A350)
- → RNP APCH capability lost
- → Crosscheck with raw data on conventional
- → No impact on ILS/GLS/SLS (specific alerting)

NAV ACCUR DOWNGRADED

→ Raw data only for conventional

LOSS OF INTEGRITY

LOSS OF ACCURACY

Management of degraded Navigation in FLS: Approach capability on FMA

F-APP = GPSF

= GPS PRIMARY

F-APP+RAW

= GPS PRIMARY LOST

On both side

- \square RNP APCH \Rightarrow Go Around
- ∇OR / NDB ⇒ Check with raw data.

RAW ONLY

= NAV ACCUR DOWNGRAD

On both side

- □ Do not use FLS guidance
- ☐ Raw data only for conventional

Conclusion

- Lot of various approach type
- 3D vs 2D service
- Airbus (and modern commercial A/C) proposes 3D guidance even when there is only 2D services based on advisory barometric vertical guidance.
- Automatic selection of the solution based on FMS selection
- Procedures:
 - Before the approach: Minimum equipment, QNH setting
 - During the approach: Monitoring of the lateral excursion and A/C position

[Airbus Amber]

Thank you