Full Scale Battery Tests

- Mixed Cells
- Lithium-ion
- Lithium metal

Presented to: ICAO Dangerous Goods Panel

By: Harry Webster, FAA Fire Safety Br.

Date: October 31, 2013

Summary of Findings From Previous Tests – Lithium-ion

- Capable of thermal runaway, through cell defect, cell damage, heat, rapid discharge, overcharging
- Thermal runaway results in high case temperatures, exceeding 1100 DegF
- Releases flammable electrolyte
- Generates sufficient heat to cause adjacent cells to go into thermal runaway
- Will propagate thermal runaway throughout shipping box, and box to box

Summary of Findings From Previous Tests – Lithium-ion

- Can experience catastrophic disassembly
- Generally do not self ignite, but high case temperatures easily ignite current packing materials, which ignite the electrolyte.
- Halon 1301 can suppress the electrolyte fire.
- In the presence of Halon, or no ignition source, unburned hydrocarbons from released electrolyte accumulate, increasing the risk of flash fire or explosion.

Summary of Findings From Previous Tests – Lithium Metal

- Capable of thermal runaway, through cell defect, cell damage, heat, rapid discharge
- Thermal runaway results in high case temperatures, exceeding 1400 DegF
- Releases flammable electrolyte and molten burning lithium
- Generates sufficient heat to cause adjacent cells to go into thermal runaway
- Will propagate thermal runaway throughout shipping box, and box to box, very rapid fire buildup.

Summary of Findings From Previous Tests – Lithium Metal

- Can experience catastrophic disassembly
- Self igniting, will rapidly ignite packaging
- Generates pressure.
- Halon 1301 can suppress the electrolyte fire, but not the lithium fire. Has no effect on propagation of thermal runaway.
- In the presence of Halon, unburned hydrocarbons from released electrolyte accumulate, increasing the risk of flash fire or explosion.

Full Scale Fire Tests

Objective

- To document the characteristics of large battery fires in a realistic aircraft environment.
- No Suppression-Class E
- With Suppression-Class C

Class E Cargo Compartment

- Upper deck compartment on most freighters
 - Has Fire detection system
 - Means to shut off ventilation flow to the compartment
 - Means to exclude
 hazardous quantities of
 smoke, flames, or noxious
 gases, from the flight crew
 compartment

Class C Cargo Compartment

Passenger aircraft under floor cargo compartments

- smoke detector or fire detector system
- built-in fire extinguishing or suppression system controllable from the cockpit
- means to exclude hazardous quantities of smoke, flames, or extinguishing agent, from any compartment occupied by the crew or passengers
- means to control ventilation and drafts within the compartment

Full Scale Fire Test Plan

- Baseline
- Class E Cargo
 - Lithium-ion 500018650 cells
 - Lithium metal 4800SF123A Cells
 - 5000 mixed alkaline,
 NiCad, NiMH

Full Scale Fire Test Plan

- Class C Cargo w/ Halon 1301 Suppression
 - Lithium-ion 500018650 cells
 - Lithium-metal 4800SF123A cells
 - 5000 mixed alkaline,
 NiCad, NiMH

Instrumented 727 Test Article

Aircraft Ventilation

- Airflow patterns within the aircraft can have significant impact on the behavior of the battery fire and smoke penetration.
- The aircraft air packs are configured differently depending on the location of the fire.
- Two configurations were developed with input from the Boeing Company, one for the maid deck class E fire and one for the forward class C compartment

Conducted Air Exchange Tests

Air Exchange Rate Results

Pressurized configuration

- Main deck cabin: 5.75 minutes per air change
- Flight deck: 1.68 minutes per air change

Unpressurized configuration

- Main deck cabin: 47.72 minutes per air change
- Flight deck: 1.71 minutes per air change

Conducted Baseline Test

Preliminary Fire Assessment

Class E Tests

- Aircraft in emergency mode
- High ventilation to flight deck
- No ventilation to main deck
- Fire control is by oxygen starvation

Results Mixed Cell Test

- Test terminated at 102 minutes with water
- Approximately 700 cells were damaged
- Low ceiling temp: 119
 DegF@ 40 min
- Moderate battery fire temp: 975 DegF@ 44 min.
- Gradual smoke obscuration in the compartment
- No smoke on the flight deck

Results Lithium-ion

- Test terminated at 57 minutes with water
- More than half of the cells consumed
- High ceiling temp: 1490
 DegF@ 49 min
- High battery fire temp: 1300 DegF@ 55 min.
- Oxygen depletion slowed fire progress
- Some light smoke on the flight deck
- Significant damage to cargo liner

Results Lithium Metal

- Test terminated at 16 minutes with water
- Approximately half of the cells were consumed
- Very high ceiling temp: 1700
 DegF@ 16 min
- Very high battery fire temp:
 2250 DegF@ 12 min.
- Oxygen starvation had little or no effect on fire intensity
- Smoke on flight deck in less than 4 minutes from first observable fire, obscured in less than 6 minutes.
- Significant cargo liner damage

Class E Lithium Metal Video

Class C Tests

- Ventilation configured for fire in lower cargo compartment
- Halon discharged one minute after initial smoke observation

Results Mixed Cells

- Halon suppressed the surface fire
- Minimal cell damage
- Low ceiling temperature
- Fire continued to smolder between boxes.
- Smoke contained in the compartment
- No damage to cargo liner

Results Lithium-ion

- Halon suppressed surface fire and the electrolyte fire
- Thermal runaway propagated between boxes
- Approximately 1200 cells were consumed
- Low to moderate ceiling temperatures
- Smoke contained within the compartment
- Little damage to cargo liner

Results Lithium Metal

- Halon suppressed the cardboard and electrolyte fire
- Thermal runaway propagated rapidly between boxes, despite Halon and extremely low oxygen levels
- 3450 cells consumed
- Smoke penetrated the mix bay and main deck
- Rapid reduction in Halon concentration
- Test was terminated due to high ceiling temperatures
- Post test event

Lithium Metal Class C Video

Cargo Compartment Fire Containment Summary

Fire Load Class E Class C

Mixed Cells Contained Contained

Lithium-ion Marginal Contained

Lithium metal Did not Did not

Contain Contain

Post Test Explosion

- The lithium metal battery fire generated a large amount of unburned hydrocarbons in the cargo compartment
- The pressure generated by the burning cells forced the hydrocarbons into the mix bay and main deck compartments

Post Test Explosion

- Post test, the oxygen levels in the cargo compartment increased, while the Halon neared zero.
- A single cell in thermal runaway caused a flash fire in the cargo compartment.
- The flash fire forced open the blow out panel into the mix bay.
- This ignited the fumes in the mix bay causing an explosion

Explosion Video- Exterior Full

Post Test Explosion

- The explosion blew the aft cargo access panel into the cargo compartment, as well as the forward cargo bulkhead into the EE bay.
- The floor boards in the main cabin above the mix bay were blown upward.
- The door to the flight deck was blown off the hinges and into the flight deck

Post Test Explosion

Explosion from Tablet Battery

Questions?

Contact Information

Harry Webster
FAA William J Hughes Technical Center
Atlantic City, NJ
609-485-4183
Harry.Webster@faa.gov

Aircraft Installed Lithium Battery Hazard Analysis

D Cell Tests

Presented to: ICAO Dangerous Goods Panel

By: Harry Webster, FAA Fire Safety Br.

Date: October 31, 2013

Aircraft Installed Lithium Battery Hazard Analysis

- An effort is underway to characterize the hazard of all lithium metal and lithium-ion cells currently or proposed to be installed as part of the aircraft system.
- A large number of cell sizes and chemistries have been procured.
- A test protocol has been developed to measure:
 - Electrolyte flammability, pressure, cell case temperature, ease of extinguishment

Aircraft Installed Lithium Battery Hazard Analysis

	Li-lon			Lithium Primary			Lithium Polymer						
												LiCoO ₂ (std rate	LiCoO₂ (high
Battery size	LiCoO ₂	LiFePO ₄	LiMnNi	LiNiMnCO	LiMnO ₂	LiFeSO ₂	LiSO ₂	LiSOCI ₂	LiFePO ₄	LiMnNi	LiNiMnCo	discharge)	Rate discharge)
10440 (AAA)													
14500 (AA)													
15270 (CR2)													
16340 (CR123A)													
18650													
25500 (C)													
32600 (D)													
9V													
2450 (button)													
2025 (button)													
10 Ah													
4.5 Ah													
0.8 Ah													

Lithium Manganese Dioxide Cell

Propagation Test, Li/MnO2

Propagation Test, Li/MnO2

5 D-Cell Li/MnO2 in Aluminum Enclosure

Lithium Thionyl Chloride

- Available in many sizes
- Extremely long shelf life
- Non-flammable electrolyte

Lithium Thionyl Chloride D Cell

Lithium Thionyl Chloride LD3 Test

Questions?

Contact Information

Harry Webster
FAA William J Hughes Technical Center
Atlantic City, NJ
609-485-4183
Harry.Webster@faa.gov

Large Format Cells

Flammability

Effect of state of charge

Presented to: ICAO Dangerous Goods

By: Harry Webster, FAA Fire Safety Br.

Date: October 31, 2013

Flammability

- Cells tested: 55Ah Lithium Cobalt Oxide
- Similar behavior to 18650 cells, only more
- Thermal runaway results in release of large volume of flammable electrolyte
- Generally requires external ignition source.
- Catastrophic Disassembly

55 Ah, 100% SOC, Alcohol Fire

55 Ah, 20% SOC, Alcohol Fire

55 Ah, 100% SOC, Heater

55 Ah, 20% SOC, Heater

1.3 Kw Battery Test 25% SOC

- Installed 600 watt cartridge heater to lower rear cell.
- Instrumented with thermocouples
- Set State of Charge to 25%

1.3 Kw Battery Test 25% SOC

- Heater was energized
- Lower rear cell with heater attached went into thermal runaway, did not ignite
- Smoke poured from front panel connections
- Heater was left on eventually driving top rear cell into thermal runaway, no ignition
- Heater shut off, no further propagation

1.3 Kw Battery Test Results

- Post test examination revealed the entire inside of the box coated with a rigid thick white material
- All cells showed signs of thermal exposure.
- Some liquid leakage from rear cells

1.3 Kw Battery Test Results

- Plastic cell retainers all charred
- Future tests at higher states of charge are planned
- Packaging

Questions?

Contact Information

Harry Webster
FAA William J Hughes Technical Center
Atlantic City, NJ
609-485-4183
Harry.Webster@faa.gov

Fire Suppression in a Class E Cargo Compartment

Presented to: ICAO Meeting

By: Dhaval Dadia, FAA Technical Center Atlantic City, NJ

Date: October 30-31, 2013

Accident History

Accident History

Accident History

Class E Fire Protection Testing

- Identifying ways to suppress fires in class-E cargo compartments
 - Oxygen Starvation
 - Secondary Fire Suppression Agent within the Container
 - Fire Containment Covers
 - Water Mist System

- Currently used ULDs can not contain deep seated fires even with the discharge of an aerosol based fire suppression agent.
- The agent escapes from the door which allows for fresh air to enter the container.

Oxygen Starvation

- Develop materials that can withstand fires within the container.
- Reduce the air exchange rate to
 - Reduce oxygen
 - Retain fire suppression agent
- Reduce weight

Secondary Fire Suppression Agent

- Detects and activates from fires within the container.
- Extinguishes or suppresses the fire within the container.
- Maintains a low oxygen concentration environment.

Fire Containment Covers

 Testing will include the testing of both metal and ion lithium batteries

Zone Based Water Mist System

