
Safe Transport of PEDs in Transport Passenger Aircraft

Presented to: ICAO DGP

By: Fire Safety Branch

Federal Aviation Administration

Date: 10/20/2017

First and Foremost: Fire Prevention!

Aircraft are Designed, Certified, and Operated with the Philosophy of Preventing Accidents, which includes Preventing Any and All Fires from Occurring.

Cargo Fire Incidents (2002-2012)

Passenger Aircraft – Class "C" Compartments

- N Registered Aircraft
- 3 Incidents (2 Fires)
 - Hair spray released in compartment
 - Overheating electronic unit that was on.
 - Flashlight that was on and overheated

Why are PEDs with Lithium Batteries an Added Risk?

- Lithium batteries are both an ignition source and a fuel.
- Lithium batteries have been a fire source in the cabin.
- Lithium battery fires may reduce the effectiveness of the fire suppression system.
 - They produce hydrogen gas when in thermal runaway.
 - Thermal runaway can propagate from cell to cell unless cooled.

Tablets in a Galley Cart

Lithium Ion Batteries in a Cargo Container

Why do cells go into thermal runaway and start fires?

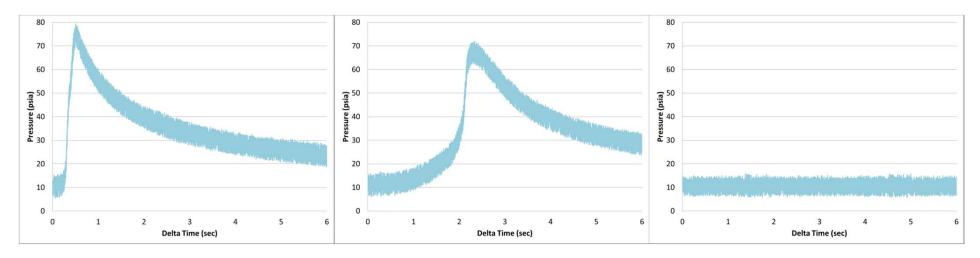
- Over charged
- Discharge too fast
- Overheating
- Internal short (defective cell)
- Damage (punctured, dropped, etc.)

Fire Suppression System

- Halon system is the second line of defense.
 - Designed for fires likely to occur
- Lithium batteries were not considered in design of system.
- Halon system may or may not be effective in controlling PED fires, i.e., the reliability of the system is negatively influenced by PED fires.

Why Might Halon Not be Effective?

- Thermal runaway can propagate from cell to cell, and Halon is not a good cooling agent.
- Cells in thermal runaway produce hydrogen, and the design concentrations of halon will not provide protection from a hydrogen explosion.


Lithium Ion Battery Vent Gas Mixture

- Lithium batteries in thermal runaway produce flammable gasses and create significant hazards for aircraft.
- The three most prevalent gases are carbon dioxide (30.1 %), hydrogen (27.6 %), and carbon monoxide (22.9 %).
- Lithium ion battery vent gas mixture by percent concentration:

30.10% CO ₂	2.21% C ₂ H ₄
27.60% H ₂	1.57% C ₄ H ₁₀
22.90% CO	1.17% C ₂ H ₆
6.37% CH ₄	0.56% C ₄ H ₈
4.48% C ₃ H ₆	0.27% C ₃ H ₈

Results (Large Scale Tests)

6 second time window

Test without suppression

Test with 5.28% Halon

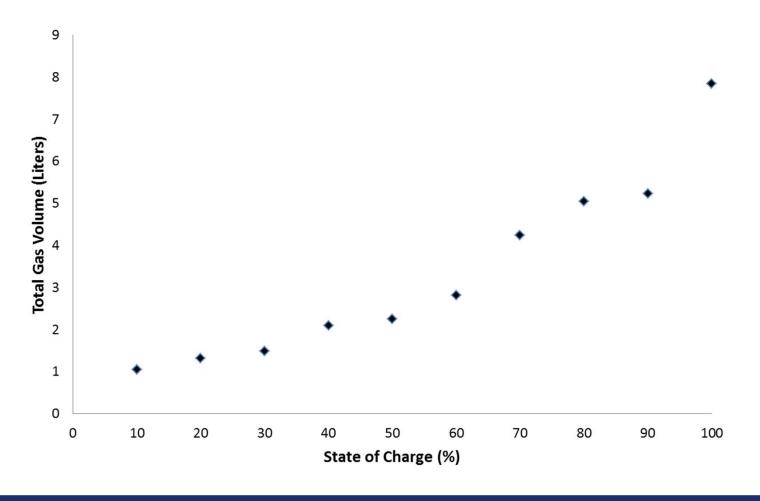
Test with 10.43% Halon

Effectiveness May Be Scenario Dependent

- Fire buildup before detection
- Fire buildup before design concentration of agent penetrates container
- Fire involves other cargo

Aerosol Can Explosion in a Class D Cargo Compartment

Why are Passenger PEDs a Greater Risk Than When Shipped by The Manufacturer?


From Manufacturer:

- Batteries not installed (unit always off).
- Batteries at reduced state of charge (most at 30%).
- Items are Marked and protected from damage.

From Passenger:

- Batteries installed (unit might be in sleep mode).
- In most cases batteries are highly charged.
- Minimal protection from damage.
- Used (and potentially abused).

Gas Volume vs State of Charge

How to Mitigate or Reduce the Risk?

Prevention

Contain the event within one laptop package

Control

 Control a PED fire such that the halon system can effectively suppress and contain the fire within the compartment.

Prevention

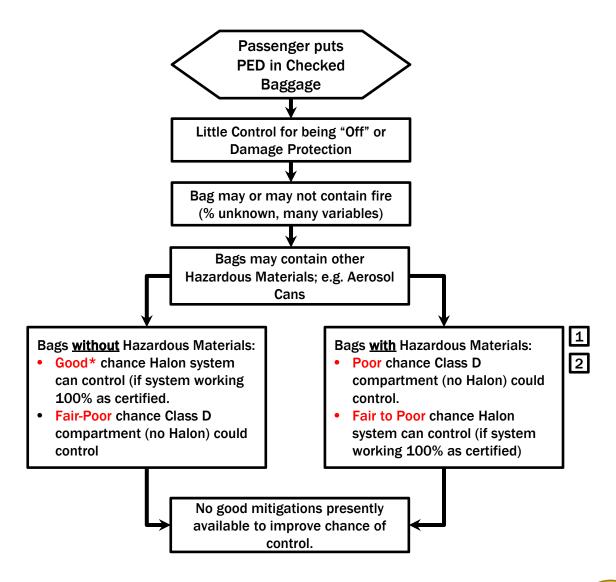
Operational Procedures:

- Laptops must be off. Much greater risk if on or in standby/sleep mode (can overheat the battery).
- Packaged to prevent damage. (Any damage increases the risk of a fire).
- Others as determined under Control.

Control:

Improve effectiveness of Halon system

- Optimal Placement of Laptops?
- Best way to maximize halon at the laptop fire?
- Quickest way to detect fire in container?


Summary:

Understand Risks

Minimize Risks

 Determine if Minimized Risks are Acceptable

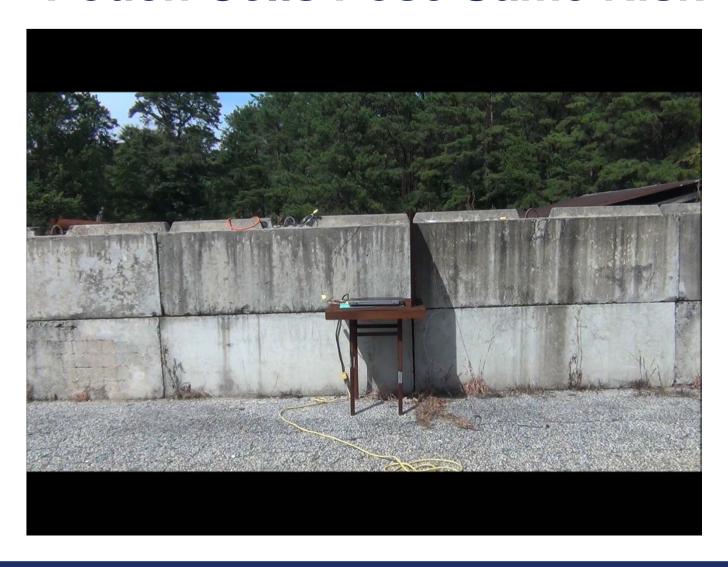
PED's in Checked Bag

What Has Been Learned from Testing

Based on Laptops Powered by 18650 Cylindrical Cells

When packed in passenger bags:

- If a cell goes into thermal runaway the fire may penetrate the bag.
 - Depends on many factors, including, packing density, materials in bag, type of bag and available air in bag.
- If other Haz. Mat.(such as aerosol cans) is in the bag an explosion can occur, not related to the gases from the battery.
 - An explosion can occur before Halon, in a Class C compartment, would be discharged and reach a 3% suppression concentration in a ULD.
 - A Class D compartment would provide <u>no protection</u> from an explosion


What Has Been Learned from Testing

Based on Laptops Powered by 18650 Cylindrical Cells

Large scale test demonstrated:

- About 2 minutes from agent discharge until 3% suppression concentration was reached within a ULD.
 - That time will depend on many factors, including agent discharge time, load factor of the compartment, leakage rate of the compartment and tightness of the ULD.
- A Halon system in a class c compartment, if working as certified, can control the fire of boxes packed in a ULD.
- A Halon system in a class c compartment, if working as certified, might not provide enough agent inside a ULD in time to suppress an explosion of an aerosol can caused by a laptop battery fire.

Pouch Cells Pose Same Risk

Laptop Luggage Test Overview

- Luggage provided by TSL, fully loaded with various items of clothing, shoes, books and other personal items.
- Laptop fitted with heater and thermocouple to initiate thermal runaway.
- Laptop placed in bag with clothing items above and below the laptop.
- Thermal runaway is initiated and the bag monitored for smoke, open flames, and temperature.

Test 1: Soft Sided Luggage

- Luggage was opened, some contents removed and the laptop was placed inside.
- The remaining contents were replaced on top of the laptop.


Test 1 Results

- The laptop was put into thermal runaway.
- Smoke was observed escaping the bag
- No open flames were observed.
- Some charring of bag contents was found post test.

Test 2: Hard Sided Luggage

- Luggage prepared in same manner as test 1.
- Large amounts of smoke were observed.
- No open flames were observed

Test 2: Results

- Considerable charring of contents.
- Some damage to inside of bag.
- Small penetration on the underside of the bag

Test 3: Soft Sided Bag

- Smoke observed.
- No open flames were observed.
- Charring of contents
- Damage to inner liner

Test 4: Soft Sided Luggage Results

- Smoke observed at thermal runaway.
- Bag was breached and open flames were observed.
- Hot vigorous fire developed.
- Bag completely destroyed.

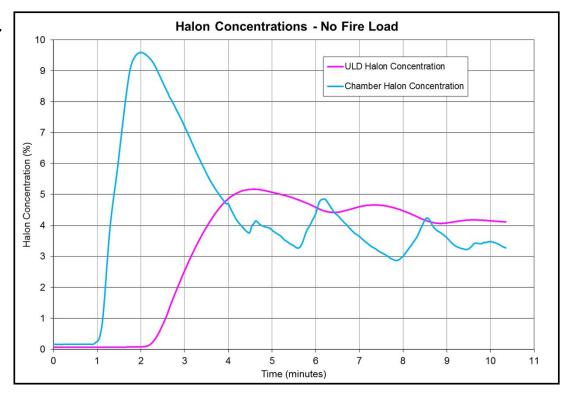
Test 4: Soft Sided Luggage Results

Test 5: Small Duffel Bag Results

- Smoke observed.
- No open flames were observed.
- Charring of contents
- Some slight burning/charring through to exterior of bag

Observations

- Tightly packed suitcases seem to contain the laptop fire better than loosely packed suitcases
- Laptop fire will spread to the suitcase contents if there
 is a sufficient air source, such as a hole in the bag.
- The type of bag contents has an effect on flammability.
- There does not appear to be a difference between soft sided and plastic hard sided bags in terms of containing a laptop fire.
- Metal sided suitcases were not available for testing.


Test Setup: Simulate Class C Cargo Compartment

- 381 cubic foot test chamber.
- 32 cubic foot ULD
- Halon system installed with 5% initial concentration and 3% maintained concentration
- Forced leakage rate 10 cubic feet/minute
- 60-70 % cargo loading by volume

Halon Concentration Test

- Halon was measured in two locations:
 - Outside the ULD near mid chamber height
 - Inside the ULD near mid chamber height
- 7.5 lb Halon discharge yields 5% in the chamber when empty
- Peak concentration is higher due to chamber loading.
- Additional Halon added as concentration depleted to maintain 3-4%

Laptop Fire Test with Halon

- 36 laptops, Emirates style packaging
 - Charged to 100%
 - Packed in bubble wrap inside Emirates style box
- Laptop in position 9 fitted with a heater to induce thermal runaway
- Halon discharged when visible smoke is observed
- 3% Halon concentration maintained for duration of test.

- Heater was energized at time 0.
- Thermal runaway was detected at 8:21
- Smoke was observed at 8:21
- Halon was discharged at 9:50
- Halon maintenance began at 15:30
- Peak Halon concentration in the chamber was 9.25%
- Peak Halon concentration in the ULD was 7.65%
- Test terminated after 60 minutes

- Soot visible on the boxes above the laptop in thermal runaway in box 9.
- Bottom of box 9 burned through

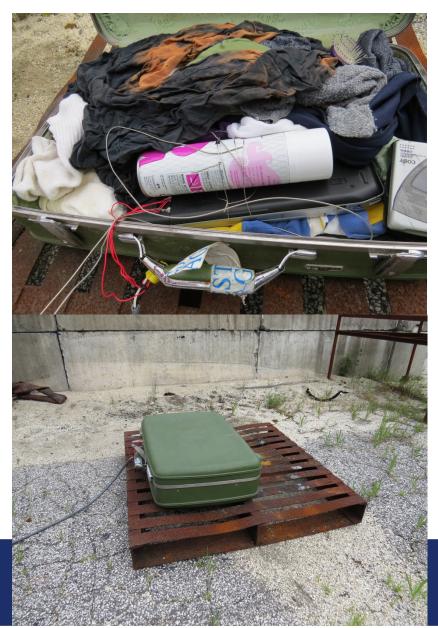
Laptop in thermal runaway

- Bubble wrap on top charred
- Bubble wrap on bottom consumed
- All cells in battery pack went into thermal runaway

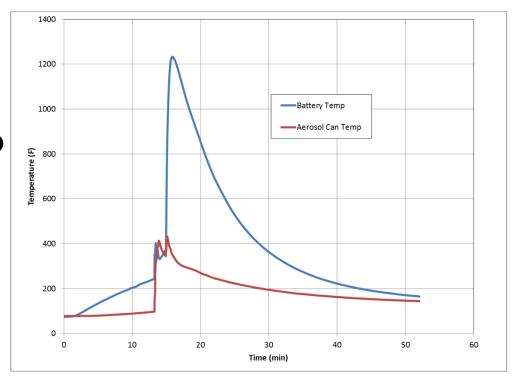
 Lid of box 10, located directly below box 9, was penetrated.

Laptop in box 10

- Bubble wrap melted.
- Laptop was charred.
- Temperature data for this laptop indicated the interior of the laptop never exceeded 100°F.


Observations: Laptop Test

- Halon was able to penetrate the simulated ULD and achieved a sufficient concentration to suppress the fire.
- The laptop in thermal runaway generated enough heat to both char and penetrate the bottom of the box and the top of the box below it.
- There was no propagation of thermal runaway to adjacent laptops


Laptop/Aerosol Can Test 1

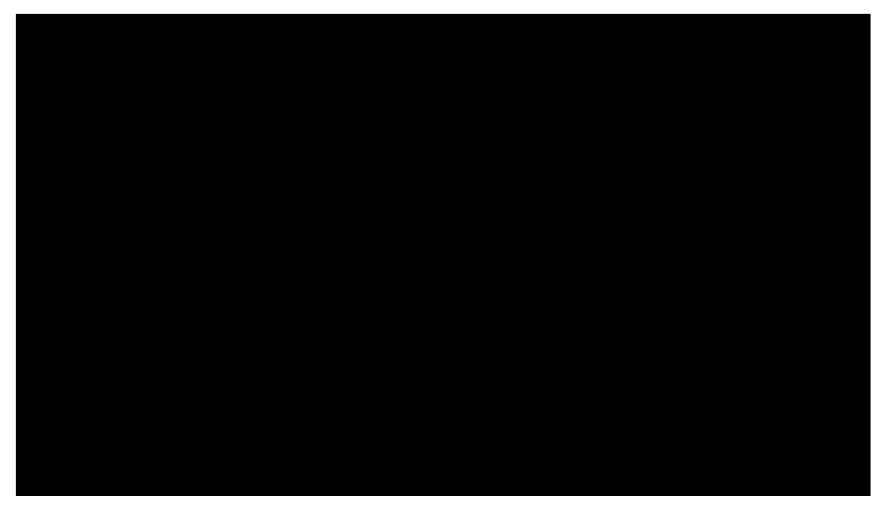
- Laptop prepared as before.
- 12 ounce aerosol can of hairspray strapped to laptop battery to ensure it stays in close proximity
- Laptop/can placed in hard sided suitcase

Laptop/Aerosol Can Test 1 Results

- Thermal runaway of battery resulted in some smoking.
- Temp reading of aerosol can appears to have been affected by the TR event.
- This temperature remained well above 200F for ~15 minutes
- No resulting explosion of can

Laptop/Aerosol Can Test 2

- Laptop prepared as before.
- 8 ounce aerosol can of dry shampoo strapped to laptop battery to ensure it stays in close proximity
- Laptop/can placed in soft sided suitcase



Laptop/Aerosol Can Test 2 Results

- Fire observed almost immediately after first thermal runaway event.
- Fire rapidly grew and within 40 second can exploded
- Fire continued to rapidly consume bag/contents

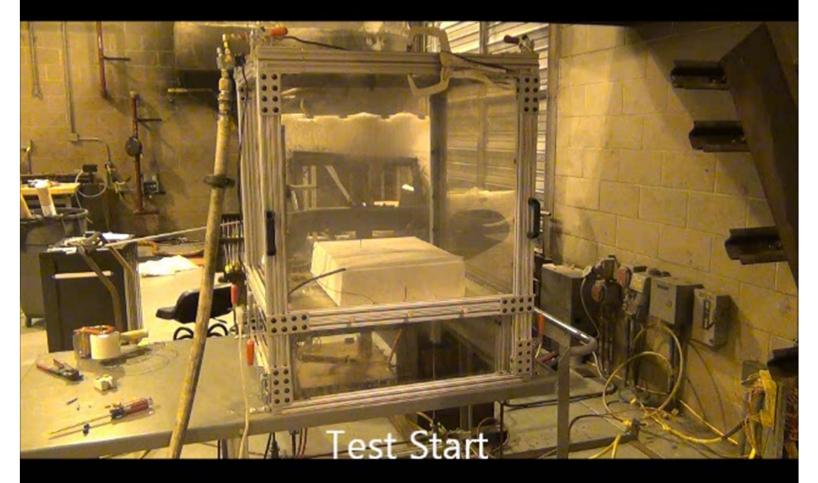
Laptop/Aerosol Can Test

Observations

 If an aerosol can is packed in a suitcase and a thermal runaway event occurs, there is the potential for an aerosol can explosion.

Effectiveness May Be Scenario Dependent

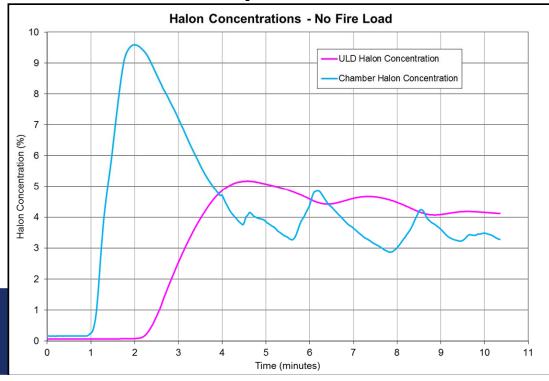
- Fire buildup before detection
- Fire buildup before design concentration of agent penetrates container
- Fire involves other cargo


Aerosol Can in Class D Compartment

Laptop in Box Lined With Fire Barrier Tested to G27 Proposed Standard

Test Setup: Simulate class C cargo compartment

- 381 cubic ft test chamber
- 32 cubic ft. ULD
- Halon system installed.
 5% initial concentration, 3% maintained
- Forced leakage rate 10 cubic feet/minute
- 60-70 % cargo loading by volume



Halon concentration test

- Halon was measured in two locations:
 - Outside the ULD near mid chamber height
 - Inside the ULD near mid chamber height
- 7.5 lb Halon discharge yields 5% in the chamber when empty
- Peak concentration is higher due to chamber loading.

Additional Halon added as concentration depleted to maintain 3-

4%

Luggage fire test with Halon

- 5 bags of luggage, filled with misc. clothing and personal effects.
- Ignition source in cardboard box filled with shredded paper placed in center position
- Halon discharged when visible smoke is observed
- 3% Halon concentration maintained for duration of test.

Results: Luggage fire test with Halon

- Heavy smoke observed shortly after halon discharged – did not clear until after ~1 hour
- Cardboard box not fully consumed
- Soot/smoke particles observable throughout pressure vessel posttest

Results: Luggage fire test with Halon

- Peak temperatures inside the 5 pieces of luggage ranged from 120 - 150°F
- 2 of the 5 bags had minor charring.

Observations- Luggage test

- Halon was able to penetrate the simulated ULD and achieve a sufficient concentration to suppress the fire.
- Fire did not propagate from cardboard box to the pieces of luggage, however some charring did occur.
- Heavy smoke throughout pressure vessel for the full hour duration of test due to likely smoldering fire within cardboard box.
- Halon performed as expected

6-22-17 Luggage Test #1 - Results

- Fire visible approximately 20 s after initial TR event
- Approximately 8.5 minutes after fire initiated, aerosol can exploded.

6-22-17 Luggage Test #1 - Results



6-22-17 Luggage Test #2 - Results

- 1st evidence of TR observed ~18.5 mins after heater activation.
- Heavy smoke coming from bag following TR.
- No evidence of flames.
- No involvement of aerosol can.
- Burning/charring of contents evidenced post-test.

6-22-17 Luggage Test #2 - Results

6-22-17 Luggage Test #3 - Results

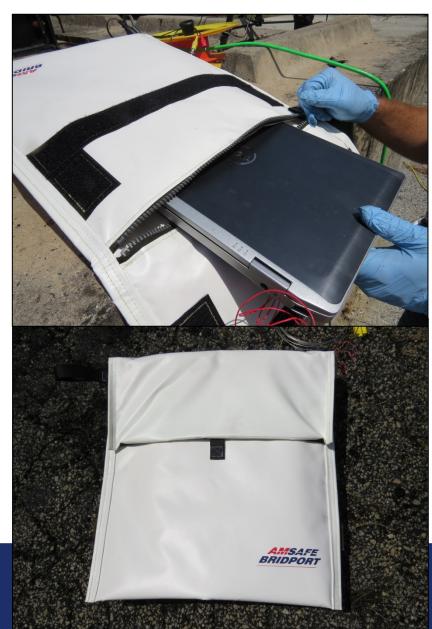
- Initial TR event occurs with release of smoke/flame
- Fire progresses and within 10 seconds, aerosol can explodes.

6-22-17 Luggage Test #3 - Results

6-22-17 Luggage Test #4 - Results

- ~10 mins after start of test, first TR event occurs
- Fire immediately visible
- Burning continues for 5-6 minutes followed by violent aerosol can explosion

6-22-17 Luggage Test #4 - Results



Luggage Test Observations

- Tightly packed suitcases seem to contain the laptop fire better than loosely packed suitcases
- Laptop fire will spread to the suitcase contents if there
 is a sufficient air source, such as a hole in the bag.
- The type of bag contents has an effect on flammability.
- The presence of flammable toiletries increases the potential for fire.
- There does not appear to be a difference between soft sided and plastic hard sided bags in terms of containing a laptop fire.
- Metal sided suitcases were not available for testing.
- If an aerosol can is packed in suitcase and a thermal runaway event occurs, there is the potential for an aerosol can explosion.

6-22-17 AMSafe Pouch Test

- Laptop instrumented as previous tests
- Placed in pouch
- Pouch zippered and sealed.
- Additional T/C positioned inside flap of the pouch

6-22-17 AMSafe Pouch Test -

Results

- Significant smoke seen emanating from pouch as TR events occurred
- Pouch expanded during TR events due to pressure build up
- Flames escaped from pouch ~30 sec after initial TR event
- Post-test evaluation showed a rupture had occurred in back surface of bag.

6-22-17 AMSafe Pouch Test - Results

